Rivet Analyses Reference

CMS_2018_I1663958

ttbar lepton+jets 13 TeV
Experiment: CMS (LHC)
Inspire ID: 1663958
Status: VALIDATED
Authors:
  • Otto Hindrichs
References:
  • arXiv: 1803.08856
  • CMS-TOP-17-002
  • Submitted to Phys. Rev. D.
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • pp QCD interactions at $\sqrt{s} = 13$ TeV. Data collected by CMS during the year 2015. Selection of lepton+jets top pair candidate events at particle level.

Abstract: Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at $\sqrt{s} = 13$\,TeV are measured as a function of kinematic variables of the top quarks and the top quark-antiquark ($\text{t}\bar{\text{t}}$) system. In addition, kinematic variables and multiplicities of jets associated with the $\text{t}\bar{\text{t}}$ production are measured. This analysis is based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.8\,fb$^{-1}$. The measurements are performed in the lepton+jets decay channels with a single muon or electron and jets in the final state. The differential cross sections are presented at the particle level, within a phase space close to the experimental acceptance, and at the parton level in the full phase space. The results are compared to several standard model predictions that use different methods and approximations. The kinematic variables of the top quarks and the $\text{t}\bar{\text{t}}$ system are reasonably described in general, though none predict all the measured distributions. In particular, the transverse momentum distribution of the top quarks is more steeply falling than predicted. The kinematic distributions and multiplicities of jets are adequately modeled by certain combinations of next-to-leading-order calculations and parton shower models. Rivet: This analysis is to be run on $\text{t}\bar{\text{t}}$ Monte Carlo. The particle-level phase space is defined using the following definitions: \begin{description} \item[lepton]: an electron or muon with $p_\text{T}>30\,\text{GeV}$ and $|\eta|<2.4$, dressed within a cone of radius 0.1, \item[jet]: a jet is reconstructed with the anti-$k_\text{T}$ algorithm with a radius of 0.4, after removing the neutrinos and dressed leptons, with $p_\text{T]>25\,\text{GeV}$ and $|\eta|<2.4$, \item[b-jet]: a jet that contains a B-hadron. \end{description} A W boson is reconstructed from a lepton and the sum of the neutrino energies, while another W boson is reconstructed from a light jet pair. The two top quarks are reconstructed by combining b jets to these W boson. A check based on the W boson and top quark masses is performed to choose the proper combinations.

Source code: CMS_2018_I1663958.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/VisibleFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/DressedLeptons.hh"
#include "Rivet/Tools/BinnedHistogram.hh"

namespace Rivet {


  /// @brief ttbar lepton+jets 13 TeV
  class CMS_2018_I1663958 : public Analysis {
  public:

    RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2018_I1663958);

    void init() {

      const FinalState fs(Cuts::abseta < 6.);
      const VisibleFinalState vfs(Cuts::abseta < 6.);

      VetoedFinalState invisibles(fs);
      invisibles.addVetoOnThisFinalState(vfs);
      declare(invisibles, "Invisibles");

      FinalState all_photons(vfs, Cuts::abspid == PID::PHOTON);
      FinalState leptons(vfs, Cuts::abspid == PID::ELECTRON || Cuts::abspid == PID::MUON);

      DressedLeptons dressed_leptons(all_photons, leptons, 0.1, Cuts::abseta < 2.4 && Cuts::pT > 15*GeV, true);
      declare(dressed_leptons, "MyLeptons");

      VetoedFinalState photons(all_photons);
      photons.addVetoOnThisFinalState(dressed_leptons);
      declare(photons, "MyPhotons");

      VetoedFinalState isolationparticles(vfs);
      isolationparticles.addVetoOnThisFinalState(dressed_leptons);
      declare(isolationparticles, "IsoParticles");

      declare(FastJets(vfs, FastJets::ANTIKT, 0.4), "Jets");

      book(_h["thadpt"], 1, 1, 1);
      book(_h["thady"],  3, 1, 1);
      book(_h["tleppt"], 5, 1, 1);
      book(_h["tlepy"],  7, 1, 1);
      book(_h["ttm"],    9, 1, 1);
      book(_h["ttpt"],  11, 1, 1);
      book(_h["tty"],   13, 1, 1);
      book(_h["njet"],  15, 1, 1);
      /// @todo Memory leak
      vector<double> njetbins = {-0.5, 0.5, 1.5, 2.5, 3.5};
      for (size_t i = 0; i < njetbins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["njet_ttm"].add(njetbins[i], njetbins[i+1], book(tmp, 17 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["njet_ttm_norm"].add(njetbins[i], njetbins[i+1], book(tmp, 99 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["njet_thadpt"].add(njetbins[i], njetbins[i+1], book(tmp, 22 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["njet_thadpt_norm"].add(njetbins[i], njetbins[i+1], book(tmp, 104 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["njet_ttpt"].add(njetbins[i], njetbins[i+1], book(tmp, 27 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["njet_ttpt_norm"].add(njetbins[i], njetbins[i+1], book(tmp, 109 + i, 1, 1)); }
      }
      vector<double> thadybins = {0.0, 0.5, 1.0, 1.5, 2.5};
      for (size_t i = 0; i < thadybins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["thady_thadpt"].add(thadybins[i], thadybins[i+1], book(tmp, 32 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["thady_thadpt_norm"].add(thadybins[i], thadybins[i+1], book(tmp, 114 + i, 1, 1)); }
      }
      vector<double> ttmbins = {300., 450., 625., 850., 2000.};
      for (size_t i = 0; i < ttmbins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["ttm_tty"].add(ttmbins[i], ttmbins[i+1], book(tmp, 37 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["ttm_tty_norm"].add(ttmbins[i], ttmbins[i+1], book(tmp, 119 + i, 1, 1)); }
      }
      vector<double> thadptbins = {0., 90., 180., 270., 800.};
      for (size_t i = 0; i < thadptbins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["thadpt_ttm"].add(thadptbins[i], thadptbins[i+1], book(tmp, 42 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["thadpt_ttm_norm"].add(thadptbins[i], thadptbins[i+1], book(tmp, 124 + i, 1, 1)); }
      }
      vector<double> jetbins = {-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5};
      for (size_t i = 0; i < jetbins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["jetspt"].add(jetbins[i], jetbins[i+1], book(tmp, 47 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetspt_norm"].add(jetbins[i], jetbins[i+1], book(tmp, 129 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetseta"].add(jetbins[i], jetbins[i+1], book(tmp, 56 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetseta_norm"].add(jetbins[i], jetbins[i+1], book(tmp, 138 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetsdr"].add(jetbins[i], jetbins[i+1], book(tmp, 65 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetsdr_norm"].add(jetbins[i], jetbins[i+1], book(tmp, 147 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetsdrtops"].add(jetbins[i], jetbins[i+1], book(tmp, 74 + i, 1, 1)); }
        { Histo1DPtr tmp; _b["jetsdrtops_norm"].add(jetbins[i], jetbins[i+1], book(tmp, 156 + i, 1, 1)); }
      }
      vector<double> njetsptbins = {0., 40., 60., 80., 120.};
      for (size_t i = 0; i < njetsptbins.size() - 1; ++i) {
        { Histo1DPtr tmp; _b["njetspt"].add(njetsptbins[i], njetsptbins[i+1], book(tmp, 169 + i, 1, 1)); }
      }

      book(_h["thadpt_norm"], 83, 1, 1);
      book(_h["thady_norm"],  85, 1, 1);
      book(_h["tleppt_norm"], 87, 1, 1);
      book(_h["tlepy_norm"],  89, 1, 1);
      book(_h["ttm_norm"],    91, 1, 1);
      book(_h["ttpt_norm"],   93, 1, 1);
      book(_h["tty_norm"],    95, 1, 1);
      book(_h["njet_norm"],   97, 1, 1);
      /// @todo Memory leak?
      book(m_hist_gap1, "d165-x01-y01");
      book(m_hist_gap2, "d167-x01-y01");
    }


    void analyze(const Event& event) {

      Jets bjets, ljets;
      Particles leptons, vetoleptons, additionalobjects, additionaljets;

      const Particles& isopars = apply<VetoedFinalState>(event, "IsoParticles").particles();
      const Particles& dressedleptons = apply<DressedLeptons>(event, "MyLeptons").particles();
      for (const Particle& lep : dressedleptons) {
        double isolation = sum(filter_select(isopars, deltaRLess(lep, 0.4)), Kin::pT, 0.);
        isolation = isolation/lep.pt();
        if (isolation > 0.35) continue;
        if (lep.pt() > 30*GeV && lep.abseta() < 2.4) leptons += lep;
        else if(lep.pt() > 15*GeV && lep.abseta() < 2.4)  vetoleptons += lep;
      }

      const Particles& photons = apply<VetoedFinalState>(event, "MyPhotons").particles(Cuts::abseta < 2.4 && Cuts::pT > 15*GeV);
      for (const Particle& ph : photons) {
        double isolation = sum(filter_select(isopars, deltaRLess(ph, 0.4)), Kin::pT, 0.);
        isolation = isolation/ph.pt() - 1.;
        if (isolation > 0.25) continue;
        additionalobjects += ph;
      }

      FourMomentum invsum(0.,0.,0.,0.);
      const Particles& invfspars = apply<FinalState>(event, "Invisibles").particles();
      for (const Particle& par : invfspars) invsum += par.mom();

      Jets allJets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::abseta < 2.4 && Cuts::pT > 25*GeV);
      idiscardIfAnyDeltaRLess(allJets, leptons, 0.4);
      idiscardIfAnyDeltaRLess(allJets, vetoleptons, 0.4);
      idiscardIfAnyDeltaRLess(allJets, additionalobjects, 0.4);
      for (const Jet& jet : allJets) {
        if (jet.bTagged())  bjets += jet;
        else                ljets += jet;
      }

      //Semi-leptonic reconstruction
      if (leptons.size() != 1 || vetoleptons.size() || bjets.size() < 2 || ljets.size() < 2)  vetoEvent;

      FourMomentum wl = invsum + leptons[0].mom();

      Particle thad, tlep;
      Particles tlep_decay(3), thad_decay(3);
      double Kmin = numeric_limits<double>::max();
      for (size_t a = 0 ; a <  ljets.size() ; ++a){
        const Jet& lja = ljets[a];
        for (size_t b = 0 ; b < a ; ++b) {
          const Jet& ljb = ljets[b];
          FourMomentum wh(lja.momentum() + ljb.momentum());
          for (const Jet& bjh : bjets) {
            FourMomentum th(wh + bjh.momentum());
            for (const Jet& bjl : bjets) {
              if (&bjh == &bjl) continue;
              FourMomentum tl(wl + bjl.momentum());

              double K = pow(wh.mass() - 80.4, 2) + pow(th.mass() - 172.5, 2) + pow(tl.mass() - 172.5, 2);
              if (K < Kmin)
              {
                Kmin = K;
                thad = Particle(6, th);
                thad_decay[0] = Particle(5, bjh);
                thad_decay[1] = lja.pt() > ljb.pt() ? Particle(1, lja) : Particle(1, ljb);
                thad_decay[2] = lja.pt() <= ljb.pt() ? Particle(1, lja) : Particle(1, ljb);
                tlep = Particle(-6, tl);
                tlep_decay[0] = Particle(5, bjl);
                tlep_decay[1] = leptons[0];
                tlep_decay[2] = Particle(-1*(leptons[0].pid()+1), invsum);
              }
            }
          }
        }
      }

      Particles tt_jets({ tlep_decay[0], thad_decay[0], thad_decay[1], thad_decay[2] });

      const double eps = 1E-5;
      for (const Jet& jet : bjets) {
        if(jet.pt() < 30*GeV || jet.abseta() > 2.4) continue;
        if(find_if(tt_jets.begin(), tt_jets.end(), [&](const Particle& par){return deltaR(jet, par) < eps;}) != tt_jets.end()) continue;
        additionaljets += Particle(5, jet.mom());
      }
      for (const Jet& jet : ljets) {
        if(jet.pt() < 30*GeV || jet.abseta() > 2.4) continue;
        if(find_if(tt_jets.begin(), tt_jets.end(), [&](const Particle& par){return deltaR(jet, par) < eps;}) != tt_jets.end()) continue;
        if(jet.cTagged())  additionaljets += Particle(4, jet.mom());
        else               additionaljets += Particle(1, jet.mom());
      }

      sort(additionaljets.begin(), additionaljets.end(), cmpMomByPt);

      FourMomentum tt(thad.mom() + tlep.mom());

      dualfill("thadpt", thad.pt()/GeV);
      dualfill("thady", thad.absrap());
      dualfill("tleppt", tlep.pt()/GeV);
      dualfill("tlepy", tlep.absrap());
      dualfill("ttm", tt.mass()/GeV);
      dualfill("ttpt", tt.pt()/GeV);
      dualfill("tty", tt.absrap());
      dualfill("njet", min(additionaljets.size(), (size_t)5));
      double njet = double(min((size_t)3, additionaljets.size()));
      dualfill("njet_ttm", njet, tt.mass()/GeV);
      dualfill("njet_thadpt", njet, thad.pt()/GeV);
      dualfill("njet_ttpt", njet, tt.pt()/GeV);
      dualfill("thady_thadpt", thad.absrap(), thad.pt()/GeV);
      dualfill("ttm_tty", tt.mass()/GeV, tt.absrap());
      dualfill("thadpt_ttm", thad.pt()/GeV, tt.mass()/GeV);
      int jpos = -1;
      for (const Particles& jets : {tt_jets, additionaljets}) {
        for (const Particle& jet : jets) {
          jpos++;
          dualfill("jetspt", jpos, jet.pt()/GeV);
          dualfill("jetseta", jpos, jet.abseta());
          double drmin = 1E10;
          for (const Particle& tjet : tt_jets) {
            double dr = deltaR(jet, tjet);
            if(dr > eps && dr < drmin)  drmin = dr;
          }
          dualfill("jetsdr", jpos, drmin);
          dualfill("jetsdrtops", jpos, min(deltaR(jet, thad), deltaR(jet, tlep)));
        }
      }
      for (double ptcut : {30, 50, 75, 100}) {
        _b["njetspt"].fill(ptcut , count_if(additionaljets.begin(), additionaljets.end(),
                                            [&ptcut](const Particle& j) {return j.pt() > ptcut;}));
      }
    }

    void dualfill(const string& tag, const double value) {
      _h[tag]->fill(value);  _h[tag + "_norm"]->fill(value);
    }

    void dualfill(const string& tag, const double val1, const double val2) {
      _b[tag].fill(val1, val2);  _b[tag + "_norm"].fill(val1, val2);
    }

    void gapfractionfromjetpt(const string& tag, Scatter2DPtr hgap, size_t njet) {
      size_t hn = njet+3;
      const double total = _b[tag].histo(0)->integral();
      const double totalj = _b[tag].histo(hn)->integral();
      double acc = total-totalj;
      double gf = acc/total;
      if (!std::isnan(gf)) {
        for (size_t nb = 0 ; nb < _b[tag].histo(hn)->numBins() ; ++nb) {
          const double bl = _b[tag].histo(njet+3)->bin(nb).xMin();
          const double bh = _b[tag].histo(njet+3)->bin(nb).xMax();
          const double bc = 0.5*(bh+bl);
          hgap->addPoint(bc, gf, bc-bl, bh-bc, 0., 0.);
          acc += _b[tag].histo(njet+3)->bin(nb).area();
          gf = acc/total;
        }
      } else  MSG_WARNING("Gap fraction is NaN. Histogram not produced.");
    }


    void finalize() {

      const double sf = crossSection()/sumOfWeights();

      gapfractionfromjetpt("jetspt", m_hist_gap1, 1);
      gapfractionfromjetpt("jetspt", m_hist_gap2, 2);

      for (auto& item : _h) {
        if (item.first.find("_norm") != string::npos) {
          normalize(item.second, 1.0, false);
        }
        else  scale(item.second, sf);
      }

      for (auto& item : _b) {
        if (item.first.find("_norm") != string::npos) {
          double area = 0;
          for (auto& hist : item.second.histos()) {  area += hist->sumW(false); }
          //normalize(item.second.histos(), 1.0, false);
          if (area)  item.second.scale(1/area, this);
        }
        else if (item.first.find("njetspt") != string::npos) {
          // skip division by bin width for secondary axis
          for (auto& hist : item.second.histos()) { scale(hist, sf); }
        }
        else  item.second.scale(sf, this);
      }

    }

    map<string,Histo1DPtr> _h;
    map<string,BinnedHistogram> _b;

    Scatter2DPtr m_hist_gap1;
    Scatter2DPtr m_hist_gap2;

  };


  RIVET_DECLARE_PLUGIN(CMS_2018_I1663958);
}