1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
class CMS_2018_I1680318 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2018_I1680318);
/// Book histograms and initialise projections before the run
void init() {
// Cuts
MinEnergy = 5.0; // Particle's energy cut in the forward region [GeV]
EtaForwardMin = 3.0;
EtaForwardMax = 5.0;
EtaCentralCut = 2.4;
MinParticlePt = 0.5; // [GeV]
// Initialise and register projections
const FinalState fsa(Cuts::abseta < EtaForwardMax);
declare(fsa, "FSA");
const ChargedFinalState cfs(Cuts::abseta < EtaCentralCut && Cuts::pT > MinParticlePt*GeV);
declare(cfs, "CFS");
// Event counters
book(_num_evts_noCuts, "num_evts_noCuts");
book(_num_evts_after_cuts_or, "num_evts_after_cuts_or");
book(_num_evts_after_cuts_and, "num_evts_after_cuts_and");
book(_num_evts_after_cuts_xor, "num_evts_after_cuts_xor");
book(_num_evts_after_cuts_xorm, "num_evts_after_cuts_xorm");
book(_num_evts_after_cuts_xorp, "num_evts_after_cuts_xorp");
// Histograms
book(_hist_dNch_all_dEta_OR, 1,1,1);
book(_hist_dNch_all_dEta_AND, 1,2,1);
book(_hist_dNch_all_dEta_XOR, 1,3,1);
book(_hist_dNch_all_dEta_XORpm, 1,4,1);
book(_hist_dNch_all_dpt_OR, 2,1,1);
book(_hist_dNch_all_dpt_AND, 2,2,1);
book(_hist_dNch_all_dpt_XOR, 2,3,1);
book(_hist_dNch_leading_dpt_OR, 3,1,1);
book(_hist_dNch_leading_dpt_AND, 3,2,1);
book(_hist_dNch_leading_dpt_XOR, 3,3,1);
book(_hist_integrated_leading_pt_OR, 4,1,1);
book(_hist_integrated_leading_pt_AND, 4,2,1);
book(_hist_integrated_leading_pt_XOR, 4,3,1);
book(_hist_dNev_all_dM_OR, 5,1,1);
book(_hist_dNev_all_dM_AND, 5,2,1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const ChargedFinalState& charged = apply<ChargedFinalState>(event, "CFS");
const FinalState& fsa = apply<FinalState>(event, "FSA");
bool activity_plus_side = false,
activity_minus_side = false;
for (const Particle& p : fsa.particles()) {
if ( p.energy() >= MinEnergy ) {
if ( inRange(p.eta(), EtaForwardMin, EtaForwardMax) ) activity_plus_side = true;
if ( inRange(p.eta(), -1.0*EtaForwardMax, -1.0*EtaForwardMin) ) activity_minus_side = true;
}
// If activity already found in both sides,
// then there is no point in keep going the loop
if (activity_plus_side && activity_minus_side) break;
}
// Event selections
const bool cutsor = ( activity_plus_side || activity_minus_side);
const bool cutsand = ( activity_plus_side && activity_minus_side);
const bool cutsxor = ((activity_plus_side && !activity_minus_side) || (!activity_plus_side && activity_minus_side));
const bool cutsxorm = (!activity_plus_side && activity_minus_side);
const bool cutsxorp = ( activity_plus_side && !activity_minus_side);
_num_evts_noCuts->fill();
if ( charged.size() >= 1 ) {
if (cutsor) _num_evts_after_cuts_or ->fill();
if (cutsand) _num_evts_after_cuts_and ->fill();
if (cutsxor) _num_evts_after_cuts_xor ->fill();
if (cutsxorm) _num_evts_after_cuts_xorm ->fill();
if (cutsxorp) _num_evts_after_cuts_xorp ->fill();
}
// Loop over charged particles
double leading_pt = 0;
for (const Particle& p : charged.particles()) {
// Find the leading-pt particle of the event
if (p.pT() > leading_pt) leading_pt = p.pT();
// Filling histograms
if (cutsor) _hist_dNch_all_dEta_OR -> fill(p.eta());
if (cutsand) _hist_dNch_all_dEta_AND -> fill(p.eta());
if (cutsxor) _hist_dNch_all_dEta_XOR -> fill(p.eta());
//Average xorm & xorp
if (cutsxorm) _hist_dNch_all_dEta_XORpm -> fill(p.eta());
if (cutsxorp) _hist_dNch_all_dEta_XORpm -> fill(-1.0*p.eta());
if (cutsor) _hist_dNch_all_dpt_OR -> fill(p.pT());
if (cutsand) _hist_dNch_all_dpt_AND -> fill(p.pT());
if (cutsxor) _hist_dNch_all_dpt_XOR -> fill(p.pT());
}
// Filling multiplicity histograms
if ( charged.size() >= 1 ) {
if (cutsor) _hist_dNev_all_dM_OR -> fill(charged.size());
if (cutsand) _hist_dNev_all_dM_AND -> fill(charged.size());
}
// Filling leading-pt histograms
if (cutsor) _hist_dNch_leading_dpt_OR -> fill(leading_pt);
if (cutsand) _hist_dNch_leading_dpt_AND -> fill(leading_pt);
if (cutsxor) _hist_dNch_leading_dpt_XOR -> fill(leading_pt);
// Integrating leading-pt histograms
for (size_t i = 0 ; i < _hist_integrated_leading_pt_OR->numBins() ; ++i) {
double binlimitlow_t = _hist_integrated_leading_pt_OR->bin(i).xMin();
double weightbw_t = _hist_integrated_leading_pt_OR->bin(i).xWidth();
double xbin_t = _hist_integrated_leading_pt_OR->bin(i).xMid();
if (leading_pt > binlimitlow_t) {
if (cutsor) _hist_integrated_leading_pt_OR -> fill(xbin_t, weightbw_t);
if (cutsand) _hist_integrated_leading_pt_AND -> fill(xbin_t, weightbw_t);
if (cutsxor) _hist_integrated_leading_pt_XOR -> fill(xbin_t, weightbw_t);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
MSG_INFO("Number of selected events: " << endl
<< "\t All = " << _num_evts_noCuts->val() << endl
<< "\t Inelastic = " << _num_evts_after_cuts_or->val() << endl
<< "\t NSD = " << _num_evts_after_cuts_and->val() << endl
<< "\t Xor = " << _num_evts_after_cuts_xor->val() << endl
<< "\t Xorm = " << _num_evts_after_cuts_xorm->val() << endl
<< "\t Xorp = " << _num_evts_after_cuts_xorp->val());
scale(_hist_dNch_all_dEta_OR, 1./ *_num_evts_after_cuts_or);
scale(_hist_dNch_all_dEta_AND, 1./ *_num_evts_after_cuts_and);
scale(_hist_dNch_all_dEta_XOR, 1./ *_num_evts_after_cuts_xor);
scale(_hist_dNch_all_dEta_XORpm, 1./ (*_num_evts_after_cuts_xorm + *_num_evts_after_cuts_xorp));
scale(_hist_dNch_all_dpt_OR, 1./ *_num_evts_after_cuts_or);
scale(_hist_dNch_all_dpt_AND, 1./ *_num_evts_after_cuts_and);
scale(_hist_dNch_all_dpt_XOR, 1./ *_num_evts_after_cuts_xor);
scale(_hist_dNch_leading_dpt_OR, 1./ *_num_evts_after_cuts_or);
scale(_hist_dNch_leading_dpt_AND, 1./ *_num_evts_after_cuts_and);
scale(_hist_dNch_leading_dpt_XOR, 1./ *_num_evts_after_cuts_xor);
scale(_hist_integrated_leading_pt_OR, 1./ *_num_evts_after_cuts_or);
scale(_hist_integrated_leading_pt_AND, 1./ *_num_evts_after_cuts_and);
scale(_hist_integrated_leading_pt_XOR, 1./ *_num_evts_after_cuts_xor);
scale(_hist_dNev_all_dM_OR, 1./ *_num_evts_after_cuts_or);
scale(_hist_dNev_all_dM_AND, 1./ *_num_evts_after_cuts_and);
}
private:
// Cuts
double MinEnergy, EtaForwardMin, EtaForwardMax, EtaCentralCut, MinParticlePt;
// Counters
CounterPtr _num_evts_noCuts,
_num_evts_after_cuts_and,
_num_evts_after_cuts_or,
_num_evts_after_cuts_xor,
_num_evts_after_cuts_xorp,
_num_evts_after_cuts_xorm;
// Histograms
Histo1DPtr
_hist_dNch_all_dEta_AND,
_hist_dNch_all_dEta_OR,
_hist_dNch_all_dEta_XOR,
_hist_dNch_all_dEta_XORpm;
Histo1DPtr
_hist_dNch_all_dpt_AND,
_hist_dNch_all_dpt_OR,
_hist_dNch_all_dpt_XOR;
Histo1DPtr
_hist_dNch_leading_dpt_AND,
_hist_dNch_leading_dpt_OR,
_hist_dNch_leading_dpt_XOR;
Histo1DPtr
_hist_integrated_leading_pt_AND,
_hist_integrated_leading_pt_OR,
_hist_integrated_leading_pt_XOR;
Histo1DPtr
_hist_dNev_all_dM_AND,
_hist_dNev_all_dM_OR;
};
RIVET_DECLARE_PLUGIN(CMS_2018_I1680318);
}
|