1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/DressedLeptons.hh"
#include "Rivet/Projections/MissingMomentum.hh"
#include "Rivet/Projections/PromptFinalState.hh"
namespace Rivet {
/// @brief Measurements of W+W- boson pair production in pp collisions at 13 TeV
class CMS_2020_I1814328 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(CMS_2020_I1814328);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
// The basic final-state projection:
// all final-state particles within
// the given eta acceptance
const FinalState fs(Cuts::abseta < 4.9);
const FinalState fsjet4p5(Cuts::abseta < 4.5);
const FinalState fsjet2p5(Cuts::abseta < 2.5);
// The final-state particles declared above are clustered using FastJet with
// the anti-kT algorithm and a jet-radius parameter 0.4
// muons and neutrinos are excluded from the clustering
FastJets jet4p5fs(fsjet4p5, FastJets::ANTIKT, 0.4);
declare(jet4p5fs, "jets4p5");
FastJets jet2p5fs(fsjet2p5, FastJets::ANTIKT, 0.4);
declare(jet2p5fs, "jets2p5");
// FinalState of prompt photons and bare muons and electrons in the event
PromptFinalState photons(Cuts::abspid == PID::PHOTON);
PromptFinalState bare_leps(Cuts::abspid == PID::MUON || Cuts::abspid == PID::ELECTRON);
bare_leps.acceptTauDecays(false);
// Dress the prompt bare leptons with prompt photons within dR < 0.1,
// and apply some fiducial cuts on the dressed leptons
Cut lepton_cuts = Cuts::abseta < 2.5 && Cuts::pT > 25*GeV;
DressedLeptons dressed_leps(photons, bare_leps, 0.1, lepton_cuts);
declare(dressed_leps, "leptons");
// Missing momentum
declare(MissingMomentum(fs), "MET");
// Book histograms
book(_h_WW_njets_norm , 2, 1, 1);
book(_h_WW_mll_norm , 4, 1, 1);
book(_h_WW_ptlmax_norm, 5, 1, 1);
book(_h_WW_ptlmin_norm, 6, 1, 1);
book(_h_WW_dphill_norm, 7, 1, 1);
book(_h_WW_njet0 , 8, 1, 1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Apply a missing-momentum cut
if (apply<MissingMomentum>(event, "MET").missingPt() < 20*GeV) return;
// Retrieve dressed leptons, sorted by pT
vector<DressedLepton> leptons = apply<DressedLeptons>(event, "leptons").dressedLeptons();
// Retrieve clustered jets, sorted by pT, with a minimum pT cut
Jets jets25 = apply<FastJets>(event, "jets4p5").jetsByPt(Cuts::pT > 25*GeV);
Jets jets30 = apply<FastJets>(event, "jets4p5").jetsByPt(Cuts::pT > 30*GeV);
Jets jets35 = apply<FastJets>(event, "jets4p5").jetsByPt(Cuts::pT > 35*GeV);
Jets jets45 = apply<FastJets>(event, "jets4p5").jetsByPt(Cuts::pT > 45*GeV);
Jets jets60 = apply<FastJets>(event, "jets4p5").jetsByPt(Cuts::pT > 60*GeV);
Jets jetsNj = apply<FastJets>(event, "jets2p5").jetsByPt(Cuts::pT > 30*GeV);
// Remove all jets within dR < 0.4 of a dressed lepton
idiscardIfAnyDeltaRLess(jets25, leptons, 0.4);
idiscardIfAnyDeltaRLess(jets30, leptons, 0.4);
idiscardIfAnyDeltaRLess(jets35, leptons, 0.4);
idiscardIfAnyDeltaRLess(jets45, leptons, 0.4);
idiscardIfAnyDeltaRLess(jets60, leptons, 0.4);
idiscardIfAnyDeltaRLess(jetsNj, leptons, 0.4);
if (leptons.size() == 2 && leptons[0].pid() * leptons[1].pid() < 0) {
FourMomentum dilCand = leptons[0].momentum() + leptons[1].momentum();
if (dilCand.mass() > 20*GeV && dilCand.pT() > 30*GeV){
double ptlmax = leptons[0].pT(); double ptlmin = leptons[1].pT();
if (ptlmax < ptlmin) {
ptlmax = leptons[1].pT(); ptlmin = leptons[0].pT();
}
if (leptons[0].abspid() != leptons[1].abspid()) {
_h_WW_njets_norm ->fill(min((double)jetsNj.size()+1, 2.999));
_h_WW_mll_norm ->fill(min(dilCand.mass()/GeV, 1499.999));
_h_WW_ptlmax_norm->fill(min(ptlmax/GeV, 399.999));
_h_WW_ptlmin_norm->fill(min(ptlmin/GeV, 149.999));
_h_WW_dphill_norm->fill(deltaPhi(leptons[0], leptons[1]));
}
if (jets25.size() == 0) _h_WW_njet0->fill(1.0);
if (jets30.size() == 0) _h_WW_njet0->fill(2.0);
if (jets35.size() == 0) _h_WW_njet0->fill(3.0);
if (jets45.size() == 0) _h_WW_njet0->fill(4.0);
if (jets60.size() == 0) _h_WW_njet0->fill(5.0);
}
}
}
/// @todo Replace with barchart()
void normalizeToSum(Histo1DPtr hist) {
double sum = 0.;
for (size_t i = 0; i < hist->numBins(); ++i) {
sum += hist->bin(i).height();
}
scale(hist, 1./sum);
}
/// Normalise histograms etc., after the run
void finalize() {
double norm = (sumOfWeights() != 0) ? crossSection()/picobarn/sumOfWeights() : 1.0;
normalizeToSum(_h_WW_njets_norm );
normalizeToSum(_h_WW_mll_norm );
normalizeToSum(_h_WW_ptlmax_norm);
normalizeToSum(_h_WW_ptlmin_norm);
normalizeToSum(_h_WW_dphill_norm);
scale(_h_WW_njet0, norm);
}
/// @}
/// @name Histograms
/// @{
Histo1DPtr _h_WW_njets_norm;
Histo1DPtr _h_WW_mll_norm, _h_WW_ptlmax_norm, _h_WW_ptlmin_norm, _h_WW_dphill_norm;
Histo1DPtr _h_WW_njet0;
/// @}
};
RIVET_DECLARE_PLUGIN(CMS_2020_I1814328);
}
|