Rivet Analyses Reference

D0_2001_S4674421

Tevatron Run I differential W/Z boson cross-section analysis
Experiment: D0 (Tevatron Run 1)
Inspire ID: 559624
Status: VALIDATED
Authors:
  • Lars Sonnenschein
References:Beams: p- p+
Beam energies: (900.0, 900.0) GeV
Run details:
  • $W/Z$ events with decays to first generation leptons, in $p\bar{p}$ collisions at $\sqrt{s} = 1800 \text{GeV}$

Measurement of differential W/Z boson cross section and ratio in $p \bar{p}$ collisions at center-of-mass energy $\sqrt{s} = 1.8 \text{TeV}$. The data cover electrons and neutrinos in a pseudorapidity range of -2.5 to 2.5.

Source code: D0_2001_S4674421.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/LeadingParticlesFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"

namespace Rivet {


  /// @brief D0 Run I differential W/Z boson cross-section analysis
  ///
  /// @author Lars Sonnenschein
  /// @author Andy Buckley
  class D0_2001_S4674421 : public Analysis {
  public:

    RIVET_DEFAULT_ANALYSIS_CTOR(D0_2001_S4674421);


    /// @name Analysis methods
    /// @{

    void init() {
      // Final state projection
      FinalState fs((Cuts::etaIn(-5.0, 5.0))); // corrected for detector acceptance
      declare(fs, "FS");

      // Z -> e- e+
      LeadingParticlesFinalState eeFS(FinalState((Cuts::etaIn(-5.0, 5.0)))); //20.);
      eeFS.addParticleIdPair(PID::ELECTRON);
      declare(eeFS, "eeFS");

      // W- -> e- nu_e~
      LeadingParticlesFinalState enuFS(FinalState((Cuts::etaIn(-5.0, 5.0)))); //25.);
      enuFS.addParticleId(PID::ELECTRON).addParticleId(PID::NU_EBAR);
      declare(enuFS, "enuFS");

      // W+ -> e+ nu_e
      LeadingParticlesFinalState enubFS(FinalState((Cuts::etaIn(-5.0, 5.0)))); //25.);
      enubFS.addParticleId(PID::POSITRON).addParticleId(PID::NU_E);
      declare(enubFS, "enubFS");

      // Remove neutrinos for isolation of final state particles
      VetoedFinalState vfs(fs);
      vfs.vetoNeutrinos();
      declare(vfs, "VFS");

      // Counters
      book(_eventsFilledW,"eventsFilledW");
      book(_eventsFilledZ,"eventsFilledZ");

      // Histograms
      book(_h_dsigdpt_w ,1, 1, 1);
      book(_h_dsigdpt_z ,1, 1, 2);
      book(_h_dsigdpt_scaled_z, 2, 1, 1);
    }


    void analyze(const Event& event) {
      const LeadingParticlesFinalState& eeFS = apply<LeadingParticlesFinalState>(event, "eeFS");
      // Z boson analysis
      if (eeFS.particles().size() >= 2) {
        // If there is a Z candidate:
        // Fill Z pT distributions
        double deltaM2=1e30,mass2(0.);
        double pT=-1.;
        const Particles& Zdaughters = eeFS.particles();
        for (size_t ix = 0; ix < Zdaughters.size(); ++ix) {
          for (size_t iy = ix+1; iy < Zdaughters.size(); ++iy) {
            if (Zdaughters[ix].pid()!=-Zdaughters[iy].pid()) continue;
            const FourMomentum pmom = Zdaughters[ix].momentum() + Zdaughters[iy].momentum();
            double mz2 = pmom.mass2();
            double dm2 = fabs(mz2 - sqr(91.118*GeV));
            if (dm2 < deltaM2) {
              pT = pmom.pT();
              deltaM2 = dm2;
              mass2 = mz2;
            }
          }
        }
        if (pT > 0. && mass2 > 0. && inRange(sqrt(mass2)/GeV, 75.0, 105.0)) {
          _eventsFilledZ->fill();
          MSG_DEBUG("Z pmom.pT() = " << pT/GeV << " GeV");
          _h_dsigdpt_z->fill(pT/GeV);
          // return if found a Z
          return;
        }
      }
      // There is no Z -> ee candidate... so this might be a W event
      const LeadingParticlesFinalState& enuFS = apply<LeadingParticlesFinalState>(event, "enuFS");
      const LeadingParticlesFinalState& enubFS = apply<LeadingParticlesFinalState>(event, "enubFS");

      double deltaM2=1e30;
      double pT=-1.;
      for (size_t iw = 0; iw < 2; ++iw) {
        Particles Wdaughters;
        Wdaughters = (iw == 0) ? enuFS.particles() : enubFS.particles();
        for (size_t ix = 0; ix < Wdaughters.size(); ++ix) {
          for (size_t iy = ix+1; iy < Wdaughters.size(); ++iy) {
            if (Wdaughters[ix].pid() == Wdaughters[iy].pid())  continue;
            const FourMomentum pmom = Wdaughters[0].momentum() + Wdaughters[1].momentum();
            double dm2 = abs(pmom.mass2() - sqr(80.4*GeV));
            if (dm2 < deltaM2) {
              pT = pmom.pT();
              deltaM2 = dm2;
            }
          }
        }
      }
      if (pT > 0.) {
        _eventsFilledW->fill();
        _h_dsigdpt_w->fill(pT/GeV);
      }
    }


    void finalize() {
      // Get cross-section per event (i.e. per unit weight) from generator
      const double xSecPerEvent = crossSectionPerEvent()/picobarn;

      // Correct W pT distribution to W cross-section
      const double xSecW = xSecPerEvent * dbl(*_eventsFilledW);

      // Correct Z pT distribution to Z cross-section
      const double xSecZ = xSecPerEvent * dbl(*_eventsFilledZ);

      // Get W and Z pT integrals
      const double wpt_integral = _h_dsigdpt_w->integral();
      const double zpt_integral = _h_dsigdpt_z->integral();

      // Divide and scale ratio histos
      if (xSecW == 0 || wpt_integral == 0 || xSecZ == 0 || zpt_integral == 0) {
        MSG_WARNING("Not filling ratio plot because input histos are empty");
      } else {
        // Scale factor converts event counts to cross-sections, and inverts the
        // branching ratios since only one decay channel has been analysed for each boson.
        // Oh, and we put MW/MZ in, like they do in the paper.
        const double MW_MZ = 0.8820; // Ratio M_W/M_Z
        const double BRZEE_BRWENU = 0.033632 / 0.1073; // Ratio of branching fractions
        const double scalefactor = (xSecW / wpt_integral) / (xSecZ / zpt_integral) * MW_MZ * BRZEE_BRWENU;
        for (size_t ibin = 0; ibin < _h_dsigdpt_w->numBins(); ibin++) {
          const double xval = _h_dsigdpt_w->bin(ibin).xMid();
          const double xerr = _h_dsigdpt_w->bin(ibin).xWidth() / 2.;
          double yval(0), yerr(0);
          if (_h_dsigdpt_w->bin(ibin).sumW() != 0 && _h_dsigdpt_z->bin(ibin).sumW() != 0) {
            yval = scalefactor * _h_dsigdpt_w->bin(ibin).sumW() / _h_dsigdpt_z->bin(ibin).sumW();
            yerr = yval * sqrt( sqr(_h_dsigdpt_w->bin(ibin).relErr()) + sqr(_h_dsigdpt_z->bin(ibin).areaErr()) );
          }
          _h_dsigdpt_scaled_z->addPoint(xval, yval, xerr, yerr);
        }
      }

      // Normalize non-ratio histos
      normalize(_h_dsigdpt_w, xSecW);
      normalize(_h_dsigdpt_z, xSecZ);
    }

    /// @}


  private:

    /// @name Event counters for cross section normalizations
    /// @{
    CounterPtr _eventsFilledW;
    CounterPtr _eventsFilledZ;
    /// @}

    /// @{
    /// Histograms
    Histo1DPtr  _h_dsigdpt_w;
    Histo1DPtr  _h_dsigdpt_z;
    Scatter2DPtr _h_dsigdpt_scaled_z;
    /// @}

  };



  RIVET_DECLARE_ALIASED_PLUGIN(D0_2001_S4674421, D0_2001_I559624);

}