1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
namespace Rivet {
/// @brief Charged multiplicity for different numbers of final state jets
class DELPHI_1992_I334948 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(DELPHI_1992_I334948);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
const ChargedFinalState cfs;
declare(cfs, "FS");
declare(FastJets(cfs, FastJets::JADE, 0.7), "Jets");
// Book histograms
for(unsigned int ih=0;ih<3;++ih) {
for(unsigned int iy=0;iy<3;++iy) {
book(_h_mult[ih][iy],ih+1,1,iy+1);
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& fs = apply<FinalState>(event, "FS");
const size_t numParticles = fs.particles().size();
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
if (numParticles < 2) {
MSG_DEBUG("Failed leptonic event cut");
vetoEvent;
}
MSG_DEBUG("Passed leptonic event cut");
const FastJets& jets = apply<FastJets>(event, "Jets");
if (jets.clusterSeq()) {
vector<double> ycut = {0.01,0.02,0.04};
for (unsigned int ih=0;ih<3;++ih) {
int nbin = jets.clusterSeq()->n_exclusive_jets_ycut(ycut[ih])-2;
if(nbin<0 || nbin>2) continue;
_h_mult[ih][nbin]->fill(numParticles);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ih=0;ih<3;++ih) {
for(unsigned int iy=0;iy<3;++iy) {
normalize(_h_mult[ih][iy],2000.);
}
}
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_mult[3][3];
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(DELPHI_1992_I334948);
}
|