1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief e+e- > tau+ tau-
class DELPHI_2000_I511443 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(DELPHI_2000_I511443);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(ChargedFinalState(), "FS");
declare(UnstableParticles(), "UFS");
// book histos
vector<double> bins={-0.94,-0.732,-0.488,-0.2440,0.,0.244,0.488,0.732,0.94};
for(unsigned int ix=0;ix<8;++ix) {
Histo1DPtr temp;
std::ostringstream title1;
title1 << "_h_e_" << ix;
book(temp,title1.str(), 20,-1,1);
_h_e .add(bins[ix],bins[ix+1],temp);
std::ostringstream title2;
title2 << "_h_mu_" << ix;
book(temp,title2.str(), 20,-1,1);
_h_mu.add(bins[ix],bins[ix+1],temp);
std::ostringstream title3;
title3 << "_h_pi_" << ix;
book(temp,title3.str(), 20,-1,1);
_h_pi.add(bins[ix],bins[ix+1],temp);
std::ostringstream title4;
title4 << "_h_rho_" << ix;
book(temp,title4.str(), 20,-1,1);
_h_rho.add(bins[ix],bins[ix+1],temp);
}
}
void findTau(const Particle & p, unsigned int & nprod,
Particles & piP,Particles & pi0, Particles & ell, Particles & nu_ell,
Particles & nu_tau) {
for(const Particle & child : p.children()) {
if(child.pid()==PID::ELECTRON || child.pid()==PID::MUON) {
++nprod;
ell.push_back(child);
}
else if(child.pid()==PID::NU_EBAR || child.pid()==PID::NU_MUBAR) {
++nprod;
nu_ell.push_back(child);
}
else if(child.pid()==PID::PIMINUS) {
++nprod;
piP.push_back(child);
}
else if(child.pid()==PID::PI0) {
++nprod;
pi0.push_back(child);
}
else if(child.pid()==PID::NU_TAU) {
++nprod;
nu_tau.push_back(child);
}
else if(child.pid()==PID::GAMMA)
continue;
else if(child.children().empty() || child.pid()==221 || child.pid()==331) {
++nprod;
}
else {
findTau(child,nprod,piP,pi0,ell,nu_ell,nu_tau);
}
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// require 2 chanrged particles to veto hadronic events
if(apply<ChargedFinalState>(event, "FS").particles().size()!=2) vetoEvent;
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
Vector3 axis;
if(beams.first.pid()>0)
axis = beams.first .momentum().p3().unit();
else
axis = beams.second.momentum().p3().unit();
// loop over tau leptons
for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::pid==15)) {
unsigned int nprod(0);
Particles piP, pi0, ell, nu_ell, nu_tau;
findTau(p,nprod,piP, pi0, ell, nu_ell, nu_tau);
LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(p.momentum().betaVec());
double cBeam = axis.dot(p.momentum().p3().unit());
if(nprod==2 && nu_tau.size()==1 && piP.size()==1) {
FourMomentum pPi = boost1.transform(piP[0].momentum());
double cTheta = pPi.p3().unit().dot(p.momentum().p3().unit());
_h_pi.fill(cBeam,cTheta);
}
else if(nprod==3 && nu_tau.size()==1 && ell.size()==1 && nu_ell.size()==1) {
if(ell[0].pid()==PID::ELECTRON)
_h_e .fill(cBeam,2.*ell[0].momentum().t()/sqrtS());
else
_h_mu.fill(cBeam,2.*ell[0].momentum().t()/sqrtS());
}
else if(nprod==3 && nu_tau.size()==1 && piP.size()==1&& pi0.size()==1) {
FourMomentum pRho = boost1.transform(piP[0].momentum()+pi0[0].momentum());
double cTheta = pRho.p3().unit().dot(p.momentum().p3().unit());
_h_rho.fill(cBeam,cTheta);
}
}
}
pair<double,double> calcP(Histo1DPtr hist,unsigned int imode) {
if(hist->numEntries()==0.) return make_pair(0.,0.);
double sum1(0.),sum2(0.);
for (auto bin : hist->bins() ) {
double Oi = bin.area();
if(Oi==0.) continue;
double ai(0.),bi(0.);
// tau -> pi/rho nu
if(imode==0) {
ai = 0.5*(bin.xMax()-bin.xMin());
bi = 0.5*ai*(bin.xMax()+bin.xMin());
}
// lepton mode
else {
ai = (-5*bin.xMin() + 3*pow(bin.xMin(),3) - pow(bin.xMin(),4) + 5*bin.xMax() - 3*pow(bin.xMax(),3) + pow(bin.xMax(),4))/3.;
bi = ( -bin.xMin() + 3*pow(bin.xMin(),3) - 2*pow(bin.xMin(),4) + bin.xMax() - 3*pow(bin.xMax(),3) + 2*pow(bin.xMax(),4))/3.;
}
double Ei = bin.areaErr();
sum1 += sqr(bi/Ei);
sum2 += bi/sqr(Ei)*(Oi-ai);
}
return make_pair(sum2/sum1,sqrt(1./sum1));
}
/// Normalise histograms etc., after the run
void finalize() {
Scatter2DPtr _h_P;
book(_h_P,1,1,1);
vector<double> bins={-0.94,-0.732,-0.488,-0.2440,0.,0.244,0.488,0.732,0.94};
for(unsigned int ix=0;ix<8;++ix) {
normalize(_h_e .histos()[ix]);
normalize(_h_mu .histos()[ix]);
normalize(_h_pi .histos()[ix]);
normalize(_h_rho.histos()[ix]);
pair<double,double> P_e = calcP(_h_e.histos()[ix],1);
double s1 = P_e.first/sqr(P_e.second);
double s2 = 1./sqr(P_e.second);
pair<double,double> P_mu = calcP(_h_mu.histos()[ix],1);
s1 += P_mu.first/sqr(P_mu.second);
s2 += 1./sqr(P_mu.second);
pair<double,double> P_pi = calcP(_h_pi.histos()[ix],0);
s1 += P_pi.first/sqr(P_pi.second);
s2 += 1./sqr(P_pi.second);
pair<double,double> P_rho = calcP(_h_rho.histos()[ix],0);
s1 += P_rho.first/sqr(P_rho.second);
s2 += 1./sqr(P_rho.second);
P_rho.first /=0.46;
P_rho.second /=0.46;
// average
pair<double,double> P_aver = make_pair(s1/s2,sqrt(1./s2));
double x = 0.5*(bins[ix+1]+bins[ix]);
double dx = 0.5*(bins[ix+1]-bins[ix]);
_h_P->addPoint(x,P_aver.first, make_pair(dx,dx),
make_pair(P_aver.second,P_aver.second));
}
}
///@}
/// @name Histograms
///@{
BinnedHistogram _h_e,_h_mu,_h_pi,_h_rho;
///@}
};
RIVET_DECLARE_PLUGIN(DELPHI_2000_I511443);
}
|