Rivet Analyses Reference

DELPHI_2003_I620250

Measurements of event shapes by DELPHI, above and below $m_Z$
Experiment: DELPHI (LEP)
Inspire ID: 620250
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Eur.Phys.J. C29 (2003) 285-312
Beams: e+ e-
Beam energies: (22.5, 22.5); (33.0, 33.0); (38.0, 38.0); (91.5, 91.5); (94.5, 94.5); (96.0, 96.0); (98.0, 98.0); (100.0, 100.0); (101.0, 101.0); (102.5, 102.5); (103.5, 103.5) GeV
Run details:
  • Hadronic Z decay events generated below the Z pole. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Measurement of a wide range of event shapes by DELPHI at energies below the Z pole using radiative events and above $m_Z$ from LEP2. This analyses allows the energy dependence of simulations to be studied. Only the distributions and not the means are implemented. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: DELPHI_2003_I620250.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Hemispheres.hh"
#include "Rivet/Projections/ParisiTensor.hh"

namespace Rivet {


  /// @brief DELPHI event shapes below the Z pole
  class DELPHI_2003_I620250 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(DELPHI_2003_I620250);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections.
      declare(Beam(), "Beams");
      const FinalState fs;
      declare(fs, "FS");
      const Thrust thrust(fs);
      declare(thrust, "Thrust");
      declare(Sphericity(fs), "Sphericity");
      declare(ParisiTensor(fs), "Parisi");
      declare(Hemispheres(thrust), "Hemispheres");

      // Histogram booking offset numbers.
      unsigned int offset = 0;
      int offset2 = -1;
      
      if      (isCompatibleWithSqrtS(45)) offset = 1;
      else if (isCompatibleWithSqrtS(66)) offset = 2;
      else if (isCompatibleWithSqrtS(76)) offset = 3;
      else if (isCompatibleWithSqrtS(183)) {
	offset2= 0;			   
	offset = 1;			   
      }					   
      else if (isCompatibleWithSqrtS(189)) {
	offset2= 0;			   
	offset = 2;			   
      }					   
      else if (isCompatibleWithSqrtS(192)) {
	offset2= 0;			   
	offset = 3;			   
      }					   
      else if (isCompatibleWithSqrtS(196)) {
	offset2= 0;			   
	offset = 4;			   
      }					   
      else if (isCompatibleWithSqrtS(200)) {
	offset2= 1;			   
	offset = 1;			   
      }					   
      else if (isCompatibleWithSqrtS(202)) {
	offset2= 1;			   
	offset = 2;			   
      }					   
      else if (isCompatibleWithSqrtS(205)) {
	offset2= 1;			   
	offset = 3;			   
      }					   
      else if (isCompatibleWithSqrtS(207)) {
	offset2= 1;
	offset = 4;
      }
      else    MSG_ERROR("Beam energy not supported!");
      // Book the histograms
      if(offset2 < 0) {
	book(_h_thrust, 1, 1, offset);
	book(_h_major, 2, 1, offset);
	book(_h_minor, 3, 1, offset);
	book(_h_sphericity, 4, 1, offset);
	book(_h_planarity, 5, 1, offset);
	book(_h_oblateness, 6, 1, offset);
	book(_h_heavy_jet_mass, 7, 1, offset);
	book(_h_light_jet_mass, 9, 1, offset);
	book(_h_diff_jet_mass, 10, 1, offset);
	book(_h_total_jet_mass, 11, 1, offset);
	book(_h_heavy_jet_mass_E,  8, 1, offset);
	book(_h_total_jet_mass_E, 12, 1, offset);
	book(_h_wide_broading, 13, 1, offset);
	book(_h_narrow_broading, 14, 1, offset);
	book(_h_total_broading, 15, 1, offset);
	book(_h_diff_broading, 16, 1, offset);
	book(_h_CParam, 17, 1, offset);
      }
      else {
	book(_h_rap, 30+offset2, 1, offset);
	book(_h_xi, 32+offset2, 1, offset);
	book(_h_pTIn, 34+offset2, 1, offset);
	book(_h_pTOut, 36+offset2, 1, offset);
	book(_h_thrust, 38+offset2, 1, offset);
	book(_h_major, 40+offset2, 1, offset);
	book(_h_minor, 42+offset2, 1, offset);
	book(_h_oblateness, 44+offset2, 1, offset);
	book(_h_wide_broading, 46+offset2, 1, offset);
	book(_h_total_broading, 48+offset2, 1, offset);
	book(_h_diff_broading, 50+offset2, 1, offset);
	book(_h_CParam, 52+offset2, 1, offset);
	book(_h_DParam, 54+offset2, 1, offset);
	book(_h_heavy_jet_mass, 56+offset2, 1, offset);
	book(_h_heavy_jet_mass_P, 58+offset2, 1, offset);
	book(_h_heavy_jet_mass_E, 60+offset2, 1, offset);
	book(_h_light_jet_mass, 62+offset2, 1, offset);
	book(_h_diff_jet_mass, 64+offset2, 1, offset);
	book(_h_sphericity, 66+offset2, 1, offset);
	book(_h_planarity, 68+offset2, 1, offset);
	book(_h_aplanarity, 70+offset2, 1, offset);
      }
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      // Get beams and average beam momentum
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      const double meanBeamMom = ( beams.first.p3().mod() +
                                   beams.second.p3().mod() ) / 2.0;
      MSG_DEBUG("Avg beam momentum = " << meanBeamMom);

      const Thrust& thrust = apply<Thrust>(event, "Thrust");
      // thrust related observables
      _h_thrust    ->fill(1.-thrust.thrust()  );
      _h_major     ->fill(thrust.thrustMajor());
      _h_minor     ->fill(thrust.thrustMinor());
      _h_oblateness->fill(thrust.oblateness() );

      // sphericity related
      const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
      _h_sphericity->fill(sphericity.sphericity());
      _h_planarity ->fill(sphericity.planarity() );
      if(_h_aplanarity) _h_aplanarity->fill(sphericity.aplanarity());
      // hemisphere related
      const Hemispheres& hemi = apply<Hemispheres>(event, "Hemispheres");
      // standard jet masses
      _h_heavy_jet_mass->fill(hemi.scaledM2high());
      _h_light_jet_mass->fill(hemi.scaledM2low() );
      _h_diff_jet_mass ->fill(hemi.scaledM2diff());
      if(_h_total_jet_mass) _h_total_jet_mass->fill(hemi.scaledM2low()+hemi.scaledM2high());
      // jet broadening
      _h_wide_broading  ->fill(hemi.Bmax() );
      if(_h_narrow_broading) _h_narrow_broading->fill(hemi.Bmin() );
      _h_total_broading ->fill(hemi.Bsum() );
      _h_diff_broading  ->fill(hemi.Bdiff());
      // E and p scheme jet masses
      Vector3 axis = thrust.thrustAxis();
      FourMomentum p4WithE, p4AgainstE;
      FourMomentum p4WithP, p4AgainstP;
      double Evis(0);
      for (const Particle& p : apply<FinalState>(event, "FS").particles()) {
	Vector3 p3 = p.momentum().vector3().unitVec();
	const double   E = p.momentum().E();
	Evis += E;
	p3 = E*p3;
	const double p3Para = dot(p3, axis);
	FourMomentum p4E(E,p3.x(),p3.y(),p3.z());
	FourMomentum p4P(p.p3().mod(),p.p3().x(),p.p3().y(),p.p3().z());
	if (p3Para > 0)      {
	  p4WithE    += p4E;
	  p4WithP    += p4P;
	}
	else if (p3Para < 0) {
	  p4AgainstE += p4E;
	  p4AgainstP += p4P;
	}
	else {
	  MSG_WARNING("Particle split between hemispheres");
	  p4WithE    += 0.5 * p4E;
	  p4AgainstE += 0.5 * p4E;
	  p4WithP    += 0.5 * p4P;
	  p4AgainstP += 0.5 * p4P;
	}
      }
      // E scheme
      const double mass2With_E    = p4WithE.mass2()/sqr(Evis);
      const double mass2Against_E = p4AgainstE.mass2()/sqr(Evis);
      // fill the histograms
      _h_heavy_jet_mass_E->fill(max(mass2With_E,mass2Against_E));
      if(_h_total_jet_mass_E) _h_total_jet_mass_E->fill(mass2With_E+mass2Against_E);
      // pscheme
      const double mass2With_P    = p4WithP.mass2()/sqr(Evis);
      const double mass2Against_P = p4AgainstP.mass2()/sqr(Evis);
      // fill the histograms
      if(_h_heavy_jet_mass_P) _h_heavy_jet_mass_P->fill(max(mass2With_P,mass2Against_P));
      
      MSG_DEBUG("Calculating Parisi params");
      const ParisiTensor& parisi = apply<ParisiTensor>(event, "Parisi");
      _h_CParam->fill(parisi.C());
      if(_h_DParam) _h_DParam->fill(parisi.D());

      // single particle distributions
      const FinalState& fs = apply<FinalState>(event, "FS");
      if(_h_xi) {
	for (const Particle& p : fs.particles()) {
	  if( ! PID::isCharged(p.pid())) continue;
	  // Get momentum and energy of each particle.
	  const Vector3 mom3 = p.p3();
	  const double energy = p.E();
	  
	  // Scaled momenta.
	  const double mom = mom3.mod();
	  const double scaledMom = mom/meanBeamMom;
	  const double logInvScaledMom = -std::log(scaledMom);
	  _h_xi->fill(logInvScaledMom);
	  
	  // Get momenta components w.r.t. thrust and sphericity.
	  const double momT = dot(thrust.thrustAxis(), mom3);
	  const double pTinT = dot(mom3, thrust.thrustMajorAxis());
	  const double pToutT = dot(mom3, thrust.thrustMinorAxis());
	  _h_pTIn ->fill(fabs(pTinT/GeV));
	  _h_pTOut->fill(fabs(pToutT/GeV));
	  
	  // Calculate rapidities w.r.t. thrust and sphericity.
	  const double rapidityT = 0.5 * std::log((energy + momT) / (energy - momT));
	  _h_rap->fill(fabs(rapidityT));
	  MSG_TRACE(fabs(rapidityT) << " " << scaledMom/GeV);
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {

      normalize(_h_thrust          );
      normalize(_h_major           );
      normalize(_h_minor           );
      normalize(_h_sphericity      );
      normalize(_h_planarity       );
      if(_h_aplanarity) normalize(_h_aplanarity       );
      normalize(_h_oblateness      );
      normalize(_h_heavy_jet_mass  );
      normalize(_h_light_jet_mass  );
      normalize(_h_diff_jet_mass   );
      if(_h_total_jet_mass) normalize(_h_total_jet_mass  );
      normalize(_h_heavy_jet_mass_E);
      if(_h_total_jet_mass_E) normalize(_h_total_jet_mass_E);
      if(_h_heavy_jet_mass_P) normalize(_h_heavy_jet_mass_P);
      normalize(_h_wide_broading   );
      if(_h_narrow_broading) normalize(_h_narrow_broading );
      normalize(_h_total_broading  );
      normalize(_h_diff_broading   );
      normalize(_h_CParam   );
      if(_h_DParam) normalize(_h_DParam   );
      if(_h_xi) {
	scale(_h_xi   ,1./sumOfWeights());
	scale(_h_pTIn ,1./sumOfWeights());
	scale(_h_pTOut,1./sumOfWeights());
	scale(_h_rap  ,1./sumOfWeights());
      }
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_thrust,_h_major,_h_minor;
    Histo1DPtr _h_sphericity,_h_planarity,_h_aplanarity,_h_oblateness;
    Histo1DPtr _h_heavy_jet_mass,_h_light_jet_mass,_h_diff_jet_mass,_h_total_jet_mass;
    Histo1DPtr _h_heavy_jet_mass_E,_h_total_jet_mass_E;
    Histo1DPtr _h_heavy_jet_mass_P;
    Histo1DPtr _h_wide_broading,_h_narrow_broading,_h_total_broading,_h_diff_broading;
    Histo1DPtr _h_CParam,_h_DParam;
    Histo1DPtr _h_xi, _h_pTIn, _h_pTOut,_h_rap;
    //@}
  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(DELPHI_2003_I620250);


}