1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Thrust.hh"
namespace Rivet {
/// @brief event shapes at 29 GeV
class HRS_1985_I201482 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(HRS_1985_I201482);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
const ChargedFinalState cfs;
declare(cfs, "FS");
declare(Sphericity(cfs), "Sphericity");
const Thrust thrust(cfs);
declare(thrust, "Thrust");
// Book histograms
book(_histSphericity, 1, 1, 1);
book(_histThrust , 3, 1, 1);
book(_histThrust2Jet, 4, 1, 1);
book(_histAplanarity, 6, 1, 1);
book(_histZ , 10, 1, 1);
book(_histZ2Jet , 11, 1, 1);
book(_histZScale , 12, 1, 1);
book(_histZJet[0] , 13, 1, 1);
book(_histZJet[1] , 14, 1, 1);
book(_histZJet[2] , 15, 1, 1);
book(_histXFeyn , 16, 1, 1);
book(_histXFeyn2Jet , 17, 1, 1);
book(_histRap , 19, 1, 1);
book(_histRap2Jet , 20, 1, 1);
book(_histPtT , 22, 1, 1);
book(_histPtT2Jet , 23, 1, 1);
book(_histPtTIn , 24, 1, 1);
book(_histPtTOut , 25, 1, 1);
book(_wSum ,"TMP/wSum");
book(_wSum2,"TMP/wSum2");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// require 5 charged particles
const FinalState& fs = apply<FinalState>(event, "FS");
const size_t numParticles = fs.particles().size();
if(numParticles<5) vetoEvent;
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double meanBeamMom = ( beams.first.p3().mod() +
beams.second.p3().mod() ) / 2.0;
MSG_DEBUG("Avg beam momentum = " << meanBeamMom);
// calc thrust and sphericity
const Thrust& thrust = apply<Thrust>(event, "Thrust");
Vector3 axis = thrust.thrustAxis();
const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
// identify two and three jet regions
bool twoJet = sphericity.sphericity()<=0.25 && sphericity.aplanarity()<=0.1;
//bool threeJet = sphericity.sphericity() >0.25 && sphericity.aplanarity()<=0.1;
_wSum->fill();
if(twoJet) _wSum2->fill();
// basic event shapes
_histSphericity->fill(sphericity.sphericity());
_histThrust ->fill(thrust.thrust());
_histAplanarity->fill(sphericity.aplanarity());
if(twoJet)
_histThrust2Jet->fill(thrust.thrust());
double pTSqIn = 0.;
double pTSqOut = 0.;
unsigned int iPlus(0),iMinus(0);
// single particle dists
for(const Particle & p : sortBy(fs.particles(),cmpMomByP)) {
const double z = p.p3().mod()/meanBeamMom;
const double momT = axis.dot(p.p3());
const double xF = fabs(momT)/meanBeamMom;
const double energy = p.E();
const double rap = 0.5 * std::log((energy + momT) / (energy - momT));
const double pTin = dot(p.p3(), thrust.thrustMajorAxis());
const double pTout = dot(p.p3(), thrust.thrustMinorAxis());
const double pT2 = sqr(pTin)+sqr(pTout);
pTSqIn += sqr(dot(p.p3(), sphericity.sphericityMajorAxis()));
pTSqOut += sqr(dot(p.p3(), sphericity.sphericityMinorAxis()));
_histZ ->fill(z );
_histZScale->fill(z );
_histXFeyn ->fill(xF ,z);
_histRap ->fill(rap );
_histPtT ->fill(pT2 );
if(twoJet) {
_histZ2Jet ->fill(z );
_histXFeyn2Jet->fill(xF ,z);
_histRap2Jet ->fill(rap);
_histPtT2Jet ->fill(pT2);
if(momT>0.&&iPlus<3) {
_histZJet[iPlus]->fill(z);
iPlus+=1;
}
else if(momT<0.&&iMinus<3) {
_histZJet[iMinus]->fill(z);
iMinus+=1;
}
}
}
_histPtTIn ->fill(pTSqIn /numParticles);
_histPtTOut->fill(pTSqOut/numParticles);
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_histSphericity);
normalize(_histThrust);
normalize(_histThrust2Jet);
normalize(_histAplanarity);
scale(_histZ ,1./ *_wSum);
scale(_histZScale , sqr(sqrtS())*crossSection()/microbarn/sumOfWeights());
scale(_histXFeyn ,1./M_PI/ *_wSum);
scale(_histRap ,1./ *_wSum);
scale(_histZ2Jet ,1./ *_wSum2);
scale(_histXFeyn2Jet,1./M_PI/ *_wSum2);
scale(_histRap2Jet ,1./ *_wSum2);
scale(_histPtT ,1./ *_wSum);
scale(_histPtT2Jet ,1./ *_wSum2);
scale(_histPtTIn ,1./ *_wSum);
scale(_histPtTOut ,1./ *_wSum);
for(unsigned int i=0;i<3;++i)
scale(_histZJet[i] ,0.5/ *_wSum2);
}
//@}
/// @name Histograms
//@{
Histo1DPtr _histSphericity, _histThrust, _histThrust2Jet, _histAplanarity,
_histZ, _histZ2Jet, _histZScale, _histXFeyn, _histXFeyn2Jet, _histRap,
_histRap2Jet, _histPtT, _histPtT2Jet, _histPtTIn, _histPtTOut ,_histZJet[3];
CounterPtr _wSum,_wSum2;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(HRS_1985_I201482);
}
|