Rivet Analyses Reference

LENA_1981_I164397

Charged particle multiplicities and thrust in $\Upsilon(1S,2S)$ decays and nearby continuum
Experiment: LENA (DORIS)
Inspire ID: 164397
Status: VALIDATED
Authors:
  • Peter Richardson
No references listed
Beams: * *
Beam energies: ANY
Run details:
  • e+e- to hadrons for continuum, or any process producing Upsilon 1S and 2S decays Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Measurement of the charged particle multiplicities and a thrust-like variable in $\Upsilon(1S,2S)$ decays and nearby continuum. As LENA had no magnetic field the momenta of the charged particles were not measured and therefore a thrust-like variable $T^\prime$ was constructed using only the directions of the charged particles. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: LENA_1981_I164397.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/Thrust.hh"

namespace Rivet {


  /// @brief Thrust like variable at Upsilon(1s,2S)
  class LENA_1981_I164397 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(LENA_1981_I164397);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {
      declare(UnstableParticles(), "UFS");
      declare(ChargedFinalState(), "FS");
      
      book(_weightSum_cont, "TMP/weightSum_cont");
      book(_weightSum_Ups1, "TMP/weightSum_Ups1");
      book(_weightSum_Ups2, "TMP/weightSum_Ups2");
      book(_charge_cont, "TMP/charge_cont");
      book(_charge_Ups1, "TMP/charge_Ups1");
      book(_charge_Ups2, "TMP/charge_Ups2");

      if(isCompatibleWithSqrtS(9.5149,1e-2)) {
        book(_hist_T_cont ,4, 1, 1);
      }
      else if(isCompatibleWithSqrtS(9.9903,1e-2)) {
        book(_hist_T_cont ,4, 1, 2);
      }
      book(_hist_T_Ups1 ,4, 1, 3);
      book(_hist_T_Ups2 ,4, 1, 4);
    }

    /// Recursively walk the decay tree to find the charged decay products of @a p
    void findDecayProducts(Particle mother, Particles& charged) {
      for(const Particle & p: mother.children()) {
        const int id = p.pid();
	if(!p.children().empty())
	  findDecayProducts(p, charged);
	else if(PID::isCharged(id))
	  charged.push_back(p);
      }
    }

    // defn of thrust in paper used just the direction
    double thrustPrime(const LorentzTransform & boost, const Particles & particles) {
      vector<Vector3> vecs;
      for(const Particle & p : particles) {
	vecs.push_back(boost.transform(p.momentum()).p3().unit());
      }
      Thrust thrust;
      thrust.calc(vecs);
      return thrust.thrust();
    }

    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // Find the Upsilons among the unstables
      const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
      Particles upsilons = ufs.particles(Cuts::pid==553 or Cuts::pid==100553);
      if (upsilons.empty()) { 
        MSG_DEBUG("No Upsilons found => continuum event");
        _weightSum_cont->fill();
	Particles cfs = apply<ChargedFinalState>(event, "FS").particles();
	_charge_cont->fill(cfs.size());
	if(_hist_T_cont) {
          LorentzTransform boost;
	  _hist_T_cont->fill(thrustPrime(boost,cfs));
	}
      }
      // Upsilon(s) found
      else {
        for (const Particle& ups : upsilons) {
          const int parentId = ups.pid();
          Particles charged;
	  // boost to rest frame (if required)
          LorentzTransform boost;
          if (ups.p3().mod() > 1*MeV)
            boost = LorentzTransform::mkFrameTransformFromBeta(ups.momentum().betaVec());
          // Find the decay products we want
          findDecayProducts(ups, charged);
	  if(parentId==553) {
	    _weightSum_Ups1->fill();
	    _charge_Ups1->fill(charged.size());
	    _hist_T_Ups1->fill(thrustPrime(boost,charged));
	  }
	  else {
	    _weightSum_Ups2->fill();
	    _charge_Ups2->fill(charged.size());
	    _hist_T_Ups2->fill(thrustPrime(boost,charged));
	  }
	}
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {
      // charged particle multiplicity
      if(_weightSum_cont->val()>0. ) {
	scale(_charge_cont,1./ *_weightSum_cont );
	if(_hist_T_cont) scale(_hist_T_cont,1./ *_weightSum_cont );
      }
      if(_weightSum_Ups1->val()>0. ) {
	scale(_charge_Ups1,1./ *_weightSum_Ups1 );
	 scale(_hist_T_Ups1,1./ *_weightSum_Ups1 );
      }
      if(_weightSum_Ups2->val()>0. ) {
	scale(_charge_Ups2,1./ *_weightSum_Ups2 );
	scale(_hist_T_Ups2,1./ *_weightSum_Ups2 );
      }
      Scatter2D tempScat(refData(3, 1, 1));
      Scatter2DPtr _mult;
      book(_mult, 3, 1, 1);
      for (size_t b = 0; b < tempScat.numPoints(); b++) {
        const double x  = tempScat.point(b).x();
        pair<double,double> ex = tempScat.point(b).xErrs();
        pair<double,double> ex2 = ex;
        if(ex2.first ==0.) ex2. first=0.02;
        if(ex2.second==0.) ex2.second=0.02;
	// Upsilon 1S
	if(b==3) {
	  if (_weightSum_Ups1->val()>0.) {
	    _mult->addPoint(x, _charge_Ups1->val(), ex, make_pair(_charge_Ups1->err(),_charge_Ups1->err()));
	  }
	  else {
	    _mult->addPoint(x, 0., ex, make_pair(0.,.0));
	  }
	}
	// Upsilon 2S
	else if(b==6) {
	  if (_weightSum_Ups2->val()>0.) {
	    _mult->addPoint(x, _charge_Ups2->val(), ex, make_pair(_charge_Ups2->err(),_charge_Ups2->err()));
	  }
	  else {
	    _mult->addPoint(x, 0., ex, make_pair(0.,.0));
	  }
	}
	else {
	  if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second) && _weightSum_cont->val()>0.) {
	    _mult->addPoint(x, _charge_cont->val(), ex, make_pair(_charge_cont->err(),_charge_cont->err()));
	  }
	  else {
	    _mult->addPoint(x, 0., ex, make_pair(0.,.0));
	  }
	}
      }
    }

    //@}


    /// @name Histograms
    //@{
    CounterPtr _weightSum_cont, _weightSum_Ups1, _weightSum_Ups2;
    CounterPtr _charge_cont, _charge_Ups1, _charge_Ups2;
    Histo1DPtr _hist_T_cont,_hist_T_Ups1,_hist_T_Ups2;
    //@}


  };


  RIVET_DECLARE_PLUGIN(LENA_1981_I164397);

}