1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
class LHCB_2013_I1208105 : public Analysis {
public:
LHCB_2013_I1208105()
: Analysis("LHCB_2013_I1208105")
{ }
void init() {
// Projections
declare(FinalState((Cuts::etaIn(1.9, 4.9))), "forwardFS");
declare(FinalState((Cuts::etaIn(-3.5,-1.5))), "backwardFS");
declare(ChargedFinalState((Cuts::etaIn(1.9, 4.9))), "forwardCFS");
declare(ChargedFinalState((Cuts::etaIn(-3.5,-1.5))), "backwardCFS");
// Histos
book(_s_chEF_minbias, 1, 1, 1, true);
book(_s_chEF_hard, 2, 1, 1, true);
book(_s_chEF_diff, 3, 1, 1, true);
book(_s_chEF_nondiff, 4, 1, 1, true);
book(_s_totEF_minbias, 5, 1, 1, true);
book(_s_totEF_hard, 6, 1, 1, true);
book(_s_totEF_diff, 7, 1, 1, true);
book(_s_totEF_nondiff, 8, 1, 1, true);
// Temporary profiles and histos
/// @todo Convert to declared/registered temp histos
book(_tp_chEF_minbias, "TMP/chEF_minbias", refData(1,1,1));
book(_tp_chEF_hard, "TMP/chEF_hard", refData(2,1,1));
book(_tp_chEF_diff, "TMP/chEF_diff", refData(3,1,1));
book(_tp_chEF_nondiff, "TMP/chEF_nondiff", refData(4,1,1));
book(_tp_totEF_minbias, "TMP/totEF_minbias", refData(5,1,1));
book(_tp_totEF_hard, "TMP/totEF_hard", refData(6,1,1));
book(_tp_totEF_diff, "TMP/totEF_diff", refData(7,1,1));
book(_tp_totEF_nondiff, "TMP/totEF_nondiff", refData(8,1,1));
book(_th_chN_minbias, "TMP/chN_minbias", refData(1,1,1));
book(_th_chN_hard, "TMP/chN_hard", refData(2,1,1));
book(_th_chN_diff, "TMP/chN_diff", refData(3,1,1));
book(_th_chN_nondiff, "TMP/chN_nondiff", refData(4,1,1));
book(_th_totN_minbias, "TMP/totN_minbias", refData(5,1,1));
book(_th_totN_hard, "TMP/totN_hard", refData(6,1,1));
book(_th_totN_diff, "TMP/totN_diff", refData(7,1,1));
book(_th_totN_nondiff, "TMP/totN_nondiff", refData(8,1,1));
// Counters
book(_mbSumW, "TMP/mbSumW");
book(_hdSumW, "TMP/hdSumW");
book(_dfSumW, "TMP/dfSumW");
book(_ndSumW, "TMP/ndSumW");
book(_mbchSumW, "TMP/mbchSumW");
book(_hdchSumW, "TMP/hdchSumW");
book(_dfchSumW, "TMP/dfchSumW");
book(_ndchSumW, "TMP/ndchSumW");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& ffs = apply<FinalState>(event, "forwardFS");
const FinalState& bfs = apply<FinalState>(event, "backwardFS");
const ChargedFinalState& fcfs = apply<ChargedFinalState>(event, "forwardCFS");
const ChargedFinalState& bcfs = apply<ChargedFinalState>(event, "backwardCFS");
// Veto this event completely if there are no forward *charged* particles
if (fcfs.empty()) vetoEvent;
// Charged and neutral version
{
// Decide empirically if this is a "hard" or "diffractive" event
bool ishardEvt = false;
for (const Particle& p : ffs.particles()) {
if (p.pT() > 3.0*GeV) { ishardEvt = true; break; }
}
// Decide empirically if this is a "diffractive" event
/// @todo Can be "diffractive" *and* "hard"?
bool isdiffEvt = (bfs.size() == 0);
// Update event-type weight counters
_mbSumW->fill();
(isdiffEvt ? _dfSumW : _ndSumW)->fill();
if (ishardEvt) _hdSumW->fill();
// Plot energy flow
for (const Particle& p : ffs.particles()) {
const double eta = p.eta();
const double energy = p.E();
_tp_totEF_minbias->fill(eta, energy);
_th_totN_minbias->fill(eta);
if (ishardEvt) {
_tp_totEF_hard->fill(eta, energy);
_th_totN_hard->fill(eta);
}
if (isdiffEvt) {
_tp_totEF_diff->fill(eta, energy);
_th_totN_diff->fill(eta);
} else {
_tp_totEF_nondiff->fill(eta, energy);
_th_totN_nondiff->fill(eta);
}
}
}
// Charged-only version
{
bool ishardEvt = false;
for (const Particle& p : fcfs.particles()) {
if (p.pT() > 3.0*GeV) { ishardEvt = true; break; }
}
// Decide empirically if this is a "diffractive" event
/// @todo Can be "diffractive" *and* "hard"?
bool isdiffEvt = (bcfs.size() == 0);
// Update event-type weight counters
_mbchSumW->fill();
(isdiffEvt ? _dfchSumW : _ndchSumW)->fill();
if (ishardEvt) _hdchSumW->fill();
// Plot energy flow
for (const Particle& p : fcfs.particles()) {
const double eta = p.eta();
const double energy = p.E();
_tp_chEF_minbias->fill(eta, energy);
_th_chN_minbias->fill(eta);
if (ishardEvt) {
_tp_chEF_hard->fill(eta, energy);
_th_chN_hard->fill(eta);
}
if (isdiffEvt) {
_tp_chEF_diff->fill(eta, energy);
_th_chN_diff->fill(eta);
} else {
_tp_chEF_nondiff->fill(eta, energy);
_th_chN_nondiff->fill(eta);
}
}
}
}
void finalize() {
if (_mbSumW->sumW()) {
for (size_t i = 0; i < _s_totEF_minbias->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_totEF_minbias->bin(i).effNumEntries() > 1) {
val = _tp_totEF_minbias->bin(i).mean() * _th_totN_minbias->bin(i).height();
err = (_tp_totEF_minbias->bin(i).mean() * _th_totN_minbias->bin(i).heightErr() +
_tp_totEF_minbias->bin(i).stdErr() * _th_totN_minbias->bin(i).height());
}
_s_totEF_minbias->point(i).setY(val/_mbSumW->val(), err/_mbSumW->val());
}
}
if (_hdSumW->sumW()) {
for (size_t i = 0; i < _s_totEF_hard->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_totEF_minbias->bin(i).effNumEntries() > 1) {
val = _tp_totEF_hard->bin(i).mean() * _th_totN_hard->bin(i).height();
err = (_tp_totEF_hard->bin(i).mean() * _th_totN_hard->bin(i).heightErr() +
_tp_totEF_hard->bin(i).stdErr() * _th_totN_hard->bin(i).height());
}
_s_totEF_hard->point(i).setY(val/_hdSumW->val(), err/_hdSumW->val());
}
}
if (_dfSumW->sumW()) {
for (size_t i = 0; i < _s_totEF_diff->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_totEF_diff->bin(i).effNumEntries() > 1) {
val = _tp_totEF_diff->bin(i).mean() * _th_totN_diff->bin(i).height();
err = (_tp_totEF_diff->bin(i).mean() * _th_totN_diff->bin(i).heightErr() +
_tp_totEF_diff->bin(i).stdErr() * _th_totN_diff->bin(i).height());
}
_s_totEF_diff->point(i).setY(val/_dfSumW->val(), err/_dfSumW->val());
}
}
if (_ndSumW->sumW()) {
for (size_t i = 0; i < _s_totEF_nondiff->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_totEF_nondiff->bin(i).effNumEntries() > 1) {
val = _tp_totEF_nondiff->bin(i).mean() * _th_totN_nondiff->bin(i).height();
err = (_tp_totEF_nondiff->bin(i).mean() * _th_totN_nondiff->bin(i).heightErr() +
_tp_totEF_nondiff->bin(i).stdErr() * _th_totN_nondiff->bin(i).height());
_s_totEF_nondiff->point(i).setY(val/_ndSumW->val(), err/_ndSumW->val());
}
}
}
if (_mbchSumW->sumW()) {
for (size_t i = 0; i < _s_chEF_minbias->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_chEF_minbias->bin(i).effNumEntries() > 1) {
val = _tp_chEF_minbias->bin(i).mean() * _th_chN_minbias->bin(i).height();
err = (_tp_chEF_minbias->bin(i).mean() * _th_chN_minbias->bin(i).heightErr() +
_tp_chEF_minbias->bin(i).stdErr() * _th_chN_minbias->bin(i).height());
}
_s_chEF_minbias->point(i).setY(val/_mbchSumW->val(), err/_mbchSumW->val());
}
}
if (_hdchSumW->sumW()) {
for (size_t i = 0; i < _s_chEF_hard->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_chEF_hard->bin(i).effNumEntries() > 1) {
val = _tp_chEF_hard->bin(i).mean() * _th_chN_hard->bin(i).height();
err = (_tp_chEF_hard->bin(i).mean() * _th_chN_hard->bin(i).heightErr() +
_tp_chEF_hard->bin(i).stdErr() * _th_chN_hard->bin(i).height());
}
_s_chEF_hard->point(i).setY(val/_hdchSumW->val(), err/_hdchSumW->val());
}
}
if (_dfchSumW->sumW()) {
for (size_t i = 0; i < _s_chEF_diff->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_chEF_diff->bin(i).effNumEntries() > 1) {
val = _tp_chEF_diff->bin(i).mean() * _th_chN_diff->bin(i).height();
err = (_tp_chEF_diff->bin(i).mean() * _th_chN_diff->bin(i).heightErr() +
_tp_chEF_diff->bin(i).stdErr() * _th_chN_diff->bin(i).height());
}
_s_chEF_diff->point(i).setY(val/_dfchSumW->val(), err/_dfchSumW->val());
}
}
if (_ndchSumW->sumW()) {
for (size_t i = 0; i < _s_chEF_nondiff->numPoints(); ++i) {
double val = 0., err = 0.;
if (_tp_chEF_nondiff->bin(i).effNumEntries() > 1) {
val = _tp_chEF_nondiff->bin(i).mean() * _th_chN_nondiff->bin(i).height();
err = (_tp_chEF_nondiff->bin(i).mean() * _th_chN_nondiff->bin(i).heightErr() +
_tp_chEF_nondiff->bin(i).stdErr() * _th_chN_nondiff->bin(i).height());
}
_s_chEF_nondiff->point(i).setY(val/_ndchSumW->val(), err/_ndchSumW->val());
}
}
}
private:
/// @name Histograms and counters
///
/// @note Histograms correspond to charged and total EF for each class of events:
/// minimum bias, hard scattering, diffractive enriched and non-diffractive enriched.
//@{
// Scatters to be filled in finalize with 1/d_eta <N(eta)><E(eta)>
Scatter2DPtr _s_totEF_minbias, _s_totEF_hard, _s_totEF_diff, _s_totEF_nondiff;
Scatter2DPtr _s_chEF_minbias, _s_chEF_hard, _s_chEF_diff, _s_chEF_nondiff;
// Temp profiles containing <E(eta)>
Profile1DPtr _tp_totEF_minbias, _tp_totEF_hard, _tp_totEF_diff, _tp_totEF_nondiff;
Profile1DPtr _tp_chEF_minbias, _tp_chEF_hard, _tp_chEF_diff, _tp_chEF_nondiff;
// Temp profiles containing <N(eta)>
Histo1DPtr _th_totN_minbias, _th_totN_hard, _th_totN_diff, _th_totN_nondiff;
Histo1DPtr _th_chN_minbias, _th_chN_hard, _th_chN_diff, _th_chN_nondiff;
// Sums of weights (~ #events) in each event class
CounterPtr _mbSumW, _hdSumW, _dfSumW, _ndSumW;
CounterPtr _mbchSumW, _hdchSumW, _dfchSumW, _ndchSumW;
//@}
};
// Hook for the plugin system
RIVET_DECLARE_PLUGIN(LHCB_2013_I1208105);
}
|