1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief D**_s decays
class LHCB_2016_I1414195 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(LHCB_2016_I1414195);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(UnstableParticles(), "UFS");
// Book histograms
book(_h_D1_ctheta, 1,1,1);
book(_h_D2_ctheta, 1,1,2);
book(_h_DStar_ctheta, 2,1,1);
book(_h_D3_ctheta[0], 2,1,2);
book(_h_D3_ctheta[1], 2,1,4);
book(_h_D3_ctheta[2], 2,1,5);
}
/// Recursively walk the decay tree to find decay products of @a p
void findDecayProducts(Particle mother, Particles & dstar, Particles & d0, Particles & K0, Particles & pi, unsigned int & ncount) {
for(const Particle & p: mother.children()) {
if(p.abspid()==413)
dstar.push_back(p);
else if(p.abspid()==421)
d0.push_back(p);
else if(p.abspid()==130 || p.abspid()==130 || p.abspid()==311)
K0.push_back(p);
else if(p.abspid()==211)
pi.push_back(p);
ncount +=1;
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
for(const Particle& p : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==435 || Cuts::abspid==10433 ||
Cuts::abspid==100433 || Cuts::abspid==437 ||
Cuts::abspid==30433)) {
// decay products
Particles dstar,d0,K0,pi;
unsigned int ncount=0;
findDecayProducts(p, dstar, d0, K0, pi, ncount);
if(ncount!=2 || dstar.size()!=1 || K0.size()!=1 ) continue;
if(dstar[0].pid()/p.pid()<0) continue;
Particle p2 = dstar[0];
LorentzTransform boost = LorentzTransform::mkFrameTransformFromBeta(p2.momentum().betaVec());
Vector3 d1 = boost.transform(K0[0].momentum()).p3().unit();
ncount=0;
dstar.clear();
d0.clear();
pi.clear();
findDecayProducts(p2, dstar, d0, K0, pi, ncount);
if(ncount!=2 || pi.size()!=1 || d0.size()!=1 ) continue;
if(pi[0].pid()/p2.pid()<0) continue;
Vector3 d2 = boost.transform(pi[0].momentum()).p3().unit();
double cTheta = d1.dot(d2);
// decay angles
if(p.abspid()==435)
_h_D2_ctheta->fill(cTheta);
else if(p.abspid()==10433)
_h_D1_ctheta->fill(cTheta);
else if(p.abspid()==100433)
_h_DStar_ctheta->fill(cTheta);
else if(p.abspid()==30433) {
_h_D3_ctheta[0]->fill(cTheta);
_h_D3_ctheta[2]->fill(cTheta);
}
else if(p.abspid()==437) {
_h_D3_ctheta[1]->fill(cTheta);
_h_D3_ctheta[2]->fill(cTheta);
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
normalize(_h_D1_ctheta);
normalize(_h_D2_ctheta);
normalize(_h_DStar_ctheta);
normalize(_h_D3_ctheta[0]);
normalize(_h_D3_ctheta[1]);
normalize(_h_D3_ctheta[2]);
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_D1_ctheta,_h_D2_ctheta,_h_DStar_ctheta,_h_D3_ctheta[3];
///@}
};
RIVET_DECLARE_PLUGIN(LHCB_2016_I1414195);
}
|