Rivet Analyses Reference

LHCF_2016_I1385877

Longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region
Experiment: LHCF (LHC)
Inspire ID: 1385877
Status: VALIDATED
Authors:
  • Eugenio Berti
  • LHCf collaboration
References:
  • Phys. Rev. D 94 (2016) 032007
Beams: p+ p+, p+ p+, p+ 1000822080
Beam energies: (3500.0, 3500.0); (1380.0, 1380.0); (4000.0, 328000.0) GeV
Run details:
  • Inclusive production cross section of neutral pion in p-p and p-Pb collisions in the very forward region expressed as a function of transverse and longitudinal momentum. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward-rapidity region have been measured at the LHC with the LHC forward detector in proton-proton collisions at $s=2.76$ and $7\,$TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $s_{\rm NN}=5.02\,$TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizeable suppression of the production of neutral pions in the differential cross sections after subtraction of ultraperipheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about $0.1-0.3$. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic-ray air showers. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: LHCF_2016_I1385877.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Longitudinal and transverse momenta of neutral pions in the forward-rapidity region
  class LHCF_2016_I1385877 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(LHCF_2016_I1385877);


    // In some models there can be very small-value pT but greater than 0.
    // In order to avoid unphysical behavior in the first bin a cutoff is needed
    // If you are sure the model does not have this problem you can set pt_cutoff to 0.
    const double pt_cutoff = 0.01;


    /// @name Analysis methods
    /// @{
    void bookHistosPP() {
      if (isCompatibleWithSqrtS(7000., 1e-3)) {
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  8.8,  9.0, book(tmp,  2, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.0,  9.2, book(tmp,  3, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.2,  9.4, book(tmp,  4, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.4,  9.6, book(tmp,  5, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.6,  9.8, book(tmp,  6, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.8, 10.0, book(tmp,  7, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 10.0, 10.2, book(tmp,  8, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 10.2, 10.4, book(tmp,  9, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 10.4, 10.6, book(tmp, 10, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 10.6, 10.8, book(tmp, 11, 1, 2));}

        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.0, 0.2, book(tmp, 12, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.2, 0.4, book(tmp, 13, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.4, 0.6, book(tmp, 14, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.6, 0.8, book(tmp, 15, 1, 2));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.8, 1.0, book(tmp, 16, 1, 2));}

        book(_p_pi0_rap_apT,      1, 1, 2);
        book(_h_pi0_rap,         21, 1, 2);
        book(_p_pi0_raploss_apT, 22, 1, 2);
        book(_h_pi0_raploss,     23, 1, 2);
      }
      else if (isCompatibleWithSqrtS(2760., 1e-3)) {
        book(_p_pi0_rap_apT, 1, 1, 1);

        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  8.8, 9.0, book(tmp, 2, 1, 1));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.0, 9.2, book(tmp, 3, 1, 1));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.2, 9.4, book(tmp, 4, 1, 1));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.4, 9.6, book(tmp, 5, 1, 1));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(  9.6, 9.8, book(tmp, 6, 1, 1));}

        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.0, 0.2, book(tmp, 12, 1, 1));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.2, 0.4, book(tmp, 13, 1, 1));}

        book(_h_pi0_rap, 21, 1, 1);

        book(_p_pi0_raploss_apT, 22, 1, 1);
        book(_h_pi0_raploss, 23, 1, 1);
      }
      else {
        MSG_WARNING("p-p collisions : energy out of range!");
      }
    }


    void bookHistosPPb() {
      if (isCompatibleWithSqrtS(sqrt(208.)*5020., 1e-3)) {

        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 8.8,  9.0, book(tmp,  2, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 9.0,  9.2, book(tmp,  3, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 9.2,  9.4, book(tmp,  4, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 9.4,  9.6, book(tmp,  5, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 9.6,  9.8, book(tmp,  6, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add( 9.8, 10.0, book(tmp,  7, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(10.0, 10.2, book(tmp,  8, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(10.2, 10.4, book(tmp,  9, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(10.4, 10.6, book(tmp, 10, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_rap_pT.add(10.6, 10.8, book(tmp, 11, 1, 3));}

        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.0,  0.2, book(tmp, 12, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.2,  0.4, book(tmp, 13, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.4,  0.6, book(tmp, 14, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.6,  0.8, book(tmp, 15, 1, 3));}
        {Histo1DPtr tmp; _h_pi0_pT_pZ.add(  0.8,  1.0, book(tmp, 16, 1, 3));}

        book(_p_pi0_rap_apT,      1, 1, 3);
        book(_p_pi0_raploss_apT, 22, 1, 3);
      }
      else {
        MSG_WARNING("p-Pb collisions : energy out of range!");
      }
    }


    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS");
      declare(Beam(), "Beam");

      // Calculate beam rapidity
      const Particle bm1 = beams().first;
      const Particle bm2 = beams().second;
      MSG_DEBUG("Beam 1 : momentum=" << bm1.pz() << " PID=" << bm1.pid() << " rapidity=" << bm1.rap());
      MSG_DEBUG("Beam 2 : momentum=" << bm2.pz() << " PID=" << bm2.pid() << " rapidity=" << bm2.rap());
      MSG_DEBUG("CM energy: " << sqrtS() );
      _beam_rap = bm1.rap();

      // Book histos for p-p or p-Pb mode
      if (bm1.pid() == PID::PROTON && bm2.pid() == PID::PROTON) {
        _isPP = true;
        bookHistosPP();
      } else if (bm1.pid() == PID::PROTON && bm2.pid() == PID::LEAD) {
        _isPP = false;
        bookHistosPPb();
      } else MSG_WARNING("Beam PDG ID out of range --- should be pp or p-Pb");

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      // Select neutral pions
      const UnstableParticles& ufs = applyProjection<UnstableParticles> (event, "UFS");
      const Particles pions = ufs.particles(Cuts::pz > 0 && Cuts::abspid == PID::PI0 && Cuts::pT > pt_cutoff*GeV);
      for (const Particle& p : pions) {
        const double pT = p.pT()/GeV;
        const double rap = p.rap();
        const double raploss = _beam_rap - p.rap();
        _p_pi0_rap_apT->fill(rap, p.pT()/MeV);
        _p_pi0_raploss_apT->fill(raploss, p.pT()/MeV);
        _h_pi0_rap_pT.fill(rap, pT, 1.0/pT);
        _h_pi0_pT_pZ.fill(pT, p.pz()/GeV, p.E()/GeV/pT);
        if (_isPP) {
          _h_pi0_rap->fill(rap);
          _h_pi0_raploss->fill(raploss);
        }
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {

      const double inv_scale_factor = 1. / sumOfWeights() / (2.*PI);
      const double pt_bin_width = 0.2;
      for (Histo1DPtr h: _h_pi0_pT_pZ.histos()){
        if (h->path() == "/LHCF_2016_I1385877/d12-x01-y01" ||
            h->path() == "/LHCF_2016_I1385877/d12-x01-y02" ||
            h->path() == "/LHCF_2016_I1385877/d12-x01-y03") {
          h->scaleW( inv_scale_factor / (pt_bin_width-pt_cutoff) );
        } else {
          h->scaleW( inv_scale_factor / pt_bin_width );
        }
      }

      const double scale_factor =  1. / sumOfWeights() / (2.*PI);
      const double rap_bin_width = 0.2;
      for (Histo1DPtr h: _h_pi0_rap_pT.histos()) {
        const int cutoff_bin = h->binIndexAt(pt_cutoff);
        if (cutoff_bin >= 0) {
          const double cutoff_wdt = h->bin(cutoff_bin).xMax()-h->bin(cutoff_bin).xMin();
          h->bin(cutoff_bin).scaleW((cutoff_wdt)/(cutoff_wdt-pt_cutoff));
        }
        h->scaleW( scale_factor / rap_bin_width );
      }

      if (_isPP) {
        scale( _h_pi0_rap , 1/sumOfWeights() );
        scale( _h_pi0_raploss , 1/sumOfWeights() );
      }

    }

    /// @}



    /// Flag for handling extra histograms in p-p runs
    bool _isPP;
    // Store the beam rapidity for rap-loss calculation (could just re-access this in analyze())
    double _beam_rap;

    /// @name Histograms
    /// @{
    BinnedHistogram _h_pi0_pT_pZ;
    BinnedHistogram _h_pi0_rap_pT;
    Profile1DPtr _p_pi0_rap_apT;
    Histo1DPtr _h_pi0_rap;
    Profile1DPtr _p_pi0_raploss_apT;
    Histo1DPtr _h_pi0_raploss;
    /// @}

  };



  RIVET_DECLARE_PLUGIN(LHCF_2016_I1385877);

}