1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief Add a short analysis description here
class MARKII_1979_I143939 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(MARKII_1979_I143939);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
book(_c_hadrons, "/TMP/sigma_hadrons");
book(_c_muons, "/TMP/sigma_muons");
book(_c_DD, "/TMP/sigma_DD");
}
void findChildren(const Particle & p,map<long,int> & nRes, int &ncount) {
for (const Particle &child : p.children()) {
if(child.children().empty()) {
nRes[child.pid()]-=1;
--ncount;
}
else
findChildren(child,nRes,ncount);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const FinalState& fs = apply<FinalState>(event, "FS");
// total hadronic and muonic cross sections
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// mu+mu- + photons
if(nCount[-13]==1 and nCount[13]==1 &&
ntotal==2+nCount[22])
_c_muons->fill();
// everything else
else
_c_hadrons->fill();
// identified final state with D mesons
const FinalState& ufs = apply<UnstableParticles>(event, "UFS");
for(unsigned int ix=0;ix<ufs.particles().size();++ix) {
bool matched = false;
const Particle& p1 = ufs.particles()[ix];
int id1 = abs(p1.pid());
if(id1 != 411 && id1 != 421) continue;
// check fs
bool fs = true;
for (const Particle & child : p1.children()) {
if(child.pid()==p1.pid()) {
fs = false;
break;
}
}
if(!fs) continue;
// find the children
map<long,int> nRes = nCount;
int ncount = ntotal;
findChildren(p1,nRes,ncount);
// loop over the other fs particles
for(unsigned int iy=ix+1;iy<ufs.particles().size();++iy) {
const Particle& p2 = ufs.particles()[iy];
fs = true;
for (const Particle & child : p2.children()) {
if(child.pid()==p2.pid()) {
fs = false;
break;
}
}
if(!fs) continue;
if(p2.pid()/abs(p2.pid())==p1.pid()/abs(p1.pid())) continue;
int id2 = abs(p2.pid());
if(id2 != 411 && id2 != 421) continue;
if(!p2.parents().empty() && p2.parents()[0].pid()==p1.pid())
continue;
map<long,int> nRes2 = nRes;
int ncount2 = ncount;
findChildren(p2,nRes2,ncount2);
if(ncount2!=0) continue;
matched=true;
for(auto const & val : nRes2) {
if(val.second!=0) {
matched = false;
break;
}
}
if(matched) {
_c_DD ->fill();
break;
}
}
if(matched) break;
}
}
/// Normalise histograms etc., after the run
void finalize() {
Scatter1D R = *_c_hadrons/ *_c_muons;
double rval = R.point(0).x();
pair<double,double> rerr = R.point(0).xErrs();
double fact = crossSection()/ sumOfWeights() /nanobarn;
double sig_h = _c_hadrons->val()*fact;
double err_h = _c_hadrons->err()*fact;
double sig_m = _c_muons ->val()*fact;
double err_m = _c_muons ->err()*fact;
Scatter2D temphisto(refData(2, 1, 1));
Scatter2DPtr hadrons;
book(hadrons, "sigma_hadrons");
Scatter2DPtr muons;
book(muons, "sigma_muons" );
Scatter2DPtr mult;
book(mult, 2,1,1);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult ->addPoint(x, rval, ex, rerr);
hadrons->addPoint(x, sig_h, ex, make_pair(err_h,err_h));
muons ->addPoint(x, sig_m, ex, make_pair(err_m,err_m));
}
else {
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
hadrons->addPoint(x, 0., ex, make_pair(0.,.0));
muons ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
double sigma = _c_DD->val()*fact;
double error = _c_DD->err()*fact;
Scatter2D temphisto2(refData(3, 1, 1));
book(mult, 3,1,1);
for (size_t b = 0; b < temphisto2.numPoints(); b++) {
const double x = temphisto2.point(b).x();
pair<double,double> ex = temphisto2.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult ->addPoint(x, sigma, ex, make_pair(error,error));
}
else {
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
//@}
/// @name Histograms
//@{
CounterPtr _c_hadrons, _c_muons, _c_DD;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(MARKII_1979_I143939);
}
|