Rivet Analyses Reference

MARKII_1988_I246184

Event Shapes at 29 GeV
Experiment: MARKII (PEP)
Inspire ID: 246184
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev.D 37 (1988) 1, 1988
Beams: e+ e-
Beam energies: (14.5, 14.5) GeV
Run details:
  • e+ e- to hadrons

Event shapes measured by the MARKII collaboration at 29 GeV.

Source code: MARKII_1988_I246184.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Hemispheres.hh"

namespace Rivet {


  /// @brief Event shapes at 29 GeV
  class MARKII_1988_I246184 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(MARKII_1988_I246184);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {
      const FinalState fs;
      declare(fs, "FS");
      const ChargedFinalState cfs;
      declare(cfs, "CFS");
      Sphericity sphere(fs);
      declare(sphere, "Sphericity");
      declare(Thrust    (fs), "Thrust"    );
      declare(Hemispheres(sphere), "Hemispheres");
      // histograms
      unsigned int ioff=18;
      for(unsigned int ix=0;ix<3;++ix) {
	book(_histAplanarity [ix]  , 1+ioff*ix, 1, 1);
	book(_histQx         [ix]  , 2+ioff*ix, 1, 1);
	book(_histQ2Q1       [ix]  , 3+ioff*ix, 1, 1);
	book(_histSphericity [ix]  , 4+ioff*ix, 1, 1);
	book(_histThrust     [ix]  , 5+ioff*ix, 1, 1);
	book(_histMinor      [ix]  , 6+ioff*ix, 1, 1);
	book(_histOblateness [ix]  , 7+ioff*ix, 1, 1);
	book(_histMJetBroad  [ix]  , 8+ioff*ix, 1, 1);
	book(_histMJetSlim   [ix]  , 9+ioff*ix, 1, 1);
	book(_histMJetDiff   [ix]  ,10+ioff*ix, 1, 1);
	book(_histScaledMom  [ix]  ,15+ioff*ix, 1, 1);
	book(_histPt2S       [ix]  ,11+ioff*ix, 1, 1);
	book(_histPtS        [ix]  ,12+ioff*ix, 1, 1);
	book(_histPtSIn      [ix]  ,14+ioff*ix, 1, 1);
	book(_histPtSOut     [ix]  ,13+ioff*ix, 1, 1);
	book(_histRapidityS  [ix]  ,16+ioff*ix, 1, 1);
	book(_histTheta      [ix]  ,17+ioff*ix, 1, 1);
	book(_histETheta     [ix]  ,18+ioff*ix, 1, 1);
      }
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // Sphericity related
      const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
      for(unsigned int ix=0;ix<3;++ix) {
	_histSphericity[ix]->fill(sphericity.sphericity());
	_histAplanarity[ix]->fill(sphericity.aplanarity());
	_histQx        [ix]->fill((sphericity.lambda1()-sphericity.lambda2())/sqrt(3.));
	_histQ2Q1      [ix]->fill(sphericity.lambda2()-sphericity.lambda3());
      }
      // thrust related
      const Thrust& thrust = apply<Thrust>(event, "Thrust");
      for(unsigned int ix=0;ix<3;++ix) {
	_histThrust    [ix]->fill(thrust.thrust());
	_histMinor     [ix]->fill(thrust.thrustMinor());
	_histOblateness[ix]->fill(thrust.oblateness());
      }
      // hemisphere related
      const Hemispheres& hemi = apply<Hemispheres>(event, "Hemispheres");
      double mWide = hemi.scaledM2high(), mNarrow = hemi.scaledM2low();
      if(!hemi.massMatchesBroadening()) swap(mWide,mNarrow);
      for(unsigned int ix=0;ix<3;++ix) {
	_histMJetBroad[ix]->fill(mWide);
	_histMJetSlim [ix]->fill(mNarrow);
	_histMJetDiff [ix]->fill(hemi.scaledM2diff());
      }
      // dists w.r.t sphericity axis
      const FinalState& cfs = apply<FinalState>(event, "CFS");
      for (const Particle& p : cfs.particles()) {
        // Get momentum and energy of each particle.
        const Vector3 mom3 = p.p3();
        const double energy = p.E();
        // Scaled momenta.
        const double mom = mom3.mod();
        const double scaledMom = 2.*mom/sqrtS();
	// Get momenta components w.r.t. thrust and sphericity.
        const double pTinS = dot(mom3, sphericity.sphericityMajorAxis());
        const double pToutS = dot(mom3, sphericity.sphericityMinorAxis());
	double pT2 = sqr(pTinS)+sqr(pToutS);
	double pT  = sqrt(pT2);
        const double momS = dot(sphericity.sphericityAxis(), mom3);
        const double rapidityS = 0.5 * std::log((energy + momS) / (energy - momS));
	// angle
	double theta = sphericity.sphericityAxis().angle(mom3)/M_PI*180.;
	if(theta>90.) theta=180.-theta;
	// fill histos
	for(unsigned int ix=0;ix<3;++ix) {
	  _histScaledMom[ix]->fill(scaledMom);
	  _histPt2S     [ix]->fill(fabs(pT2/GeV));
	  _histPtS      [ix]->fill(fabs(pT/GeV));
	  _histPtSIn    [ix]->fill(fabs(pTinS/GeV));
	  _histPtSOut   [ix]->fill(fabs(pToutS/GeV));
	  _histRapidityS[ix]->fill(fabs(rapidityS));
	  _histTheta    [ix]->fill(theta);
	}
      }
      // energy flow includes neutral w.r.t sphericity axis
      const FinalState& fs = apply<FinalState>(event, "FS");
      for (const Particle& p : fs.particles()) {
        // Get momentum and energy of each particle.
        const Vector3 mom3 = p.p3();
        const double energy = p.E();
	// angle
	double theta = sphericity.sphericityAxis().angle(mom3)/M_PI*180.;
	if(theta>90.) theta=180.-theta;
	// fill histos
	for(unsigned int ix=0;ix<3;++ix) {
	  _histETheta   [ix]->fill(theta,energy);
	}
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      for(unsigned int ix=0;ix<3;++ix) {
	scale(_histAplanarity [ix]  ,1./sumOfWeights());
	scale(_histQx         [ix]  ,1./sumOfWeights());
	scale(_histQ2Q1       [ix]  ,1./sumOfWeights());
	scale(_histSphericity [ix]  ,1./sumOfWeights());
	scale(_histThrust     [ix]  ,1./sumOfWeights());
	scale(_histMinor      [ix]  ,1./sumOfWeights());
	scale(_histOblateness [ix]  ,1./sumOfWeights());
	scale(_histMJetBroad  [ix]  ,1./sumOfWeights());
	scale(_histMJetSlim   [ix]  ,1./sumOfWeights());
	scale(_histMJetDiff   [ix]  ,1./sumOfWeights());
	scale(_histScaledMom  [ix]  ,1./sumOfWeights());
	scale(_histPt2S       [ix]  ,1./sumOfWeights());
	scale(_histPtS        [ix]  ,1./sumOfWeights());
	scale(_histPtSIn      [ix]  ,1./sumOfWeights());
	scale(_histPtSOut     [ix]  ,1./sumOfWeights());
	scale(_histRapidityS  [ix]  ,1./sumOfWeights());
	scale(_histTheta      [ix]  ,1./sumOfWeights());
	scale(_histETheta     [ix]  ,1./sumOfWeights());
      }
    }

    ///@}


    /// @name Histograms
    ///@{
    Histo1DPtr _histAplanarity[3],_histQx[3],_histQ2Q1[3],_histSphericity[3];
    Histo1DPtr _histThrust[3],_histMinor[3],_histOblateness[3];
    Histo1DPtr _histMJetBroad[3],_histMJetSlim[3],_histMJetDiff[3];
    Histo1DPtr _histScaledMom[3],_histPt2S[3],_histPtS[3],_histPtSIn[3],_histPtSOut[3],_histRapidityS[3];
    Histo1DPtr _histTheta[3],_histETheta[3];
    ///@}


  };


  RIVET_DECLARE_PLUGIN(MARKII_1988_I246184);

}