Rivet Analyses Reference

MC_PRINTEVENT

Print out a dump of each event to standard output
Experiment: ()
Status: VALIDATED
Authors:
  • Andy Buckley
No references listed
Beams: * *
Beam energies: ANY
Run details:
  • Can be used with any event type.

Print out a dump of the event structure to the terminal standard output, in a conveniently human readable form with e.g. particle names in addition to the usual numerical ID codes.

Source code: MC_PRINTEVENT.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"

namespace Rivet {


  /// @author Andy Buckley
  class MC_PRINTEVENT : public Analysis {
  public:

    /// Constructor
    MC_PRINTEVENT()
      : Analysis("MC_PRINTEVENT")
    {    }


    /// @name Analysis methods
    //@{

    void init() {

      /// Set up particle name map
      // quarks & gluons
      _pnames[1] = "d";
      _pnames[-1] = "d~";
      _pnames[2] = "u";
      _pnames[-2] = "u~";
      _pnames[3] = "s";
      _pnames[-3] = "s~";
      _pnames[4] = "c";
      _pnames[-4] = "c~";
      _pnames[5] = "b";
      _pnames[-5] = "b~";
      _pnames[6] = "t";
      _pnames[-6] = "t~";
      // bosons
      _pnames[21] = "g";
      _pnames[22] = "gamma";
      _pnames[23] = "Z0";
      _pnames[24] = "W+";
      _pnames[-24] = "W-";
      _pnames[25] = "h0";
      _pnames[26] = "h0";
      // leptons
      _pnames[11] = "e-";
      _pnames[-11] = "e+";
      _pnames[13] = "mu-";
      _pnames[-13] = "mu+";
      _pnames[15] = "tau-";
      _pnames[-15] = "tau+";
      _pnames[12] = "nu_e";
      _pnames[-12] = "nu_e~";
      _pnames[14] = "nu_mu";
      _pnames[-14] = "nu_mu~";
      _pnames[16] = "nu_tau";
      _pnames[-16] = "nu_tau~";
      // common hadrons
      _pnames[111] = "pi0";
      _pnames[211] = "pi+";
      _pnames[-211] = "pi-";
      _pnames[221] = "eta";
      _pnames[331] = "eta'";
      _pnames[113] = "rho0";
      _pnames[213] = "rho+";
      _pnames[-213] = "rho-";
      _pnames[223] = "omega";
      _pnames[333] = "phi";
      _pnames[130] = "K0L";
      _pnames[310] = "K0S";
      _pnames[311] = "K0";
      _pnames[-311] = "K0";
      _pnames[321] = "K+";
      _pnames[-321] = "K-";
      _pnames[313] = "K*0";
      _pnames[-313] = "K*0~";
      _pnames[323] = "K*+";
      _pnames[-323] = "K*-";
      _pnames[411] = "D+";
      _pnames[-411] = "D-";
      _pnames[421] = "D0";
      _pnames[-421] = "D0~";
      _pnames[413] = "D*+";
      _pnames[-413] = "D*-";
      _pnames[423] = "D*0";
      _pnames[-423] = "D*0~";
      _pnames[431] = "Ds+";
      _pnames[-431] = "Ds-";
      _pnames[433] = "Ds*+";
      _pnames[-433] = "Ds*-";
      _pnames[511] = "B0";
      _pnames[-511] = "B0~";
      _pnames[521] = "B+";
      _pnames[-521] = "B-";
      _pnames[513] = "B*0";
      _pnames[-513] = "B*0~";
      _pnames[523] = "B*+";
      _pnames[-523] = "B*-";
      _pnames[531] = "B0s";
      _pnames[541] = "Bc+";
      _pnames[-541] = "Bc-";
      _pnames[441] = "eta_c(1S)";
      _pnames[443] = "J/psi(1S)";
      _pnames[551] = "eta_b(1S)";
      _pnames[553] = "Upsilon(1S)";
      _pnames[2212] = "p+";
      _pnames[-2212] = "p-";
      _pnames[2112] = "n";
      _pnames[-2112] = "n~";
      _pnames[2224] = "Delta++";
      _pnames[2214] = "Delta+";
      _pnames[2114] = "Delta0";
      _pnames[1114] = "Delta-";
      _pnames[3122] = "Lambda";
      _pnames[-3122] = "Lambda~";
      _pnames[3222] = "Sigma+";
      _pnames[-3222] = "Sigma+~";
      _pnames[3212] = "Sigma0";
      _pnames[-3212] = "Sigma0~";
      _pnames[3112] = "Sigma-";
      _pnames[-3112] = "Sigma-~";
      _pnames[4122] = "Lambda_c+";
      _pnames[-4122] = "Lambda_c-";
      _pnames[5122] = "Lambda_b";
      // exotic
      _pnames[32] = "Z'";
      _pnames[34] = "W'+";
      _pnames[-34] = "W'-";
      _pnames[35] = "H0";
      _pnames[36] = "A0";
      _pnames[37] = "H+";
      _pnames[-37] = "H-";
      // shower-specific
      _pnames[91] = "cluster";
      _pnames[92] = "string";
      _pnames[9922212] = "remn";
      _pnames[1103] = "dd";
      _pnames[2101] = "ud0";
      _pnames[2103] = "ud1";
      _pnames[2203] = "uu";

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      /// @todo Wouldn't this be nice... if HepMC::IO_AsciiParticles was sane :-/
      // printEvent(event.genEvent());

      #ifdef RIVET_ENABLE_HEPMC_3
      
      /// @todo gonna try this instead of replicating everything below
      RivetHepMC::Print::content(*(event.genEvent()));
      
      #else
      
      const GenEvent* evt = event.genEvent();

      cout << string(120, '=') << "\n" << endl;

      // Weights
      cout << "Weights(" << evt->weights().size() << ")=";
      /// @todo Re-enable
      // for (double w,  evt->weights())
      //   cout << w << " ";
      cout << "\n"
           << "EventScale " << evt->event_scale()
           << " [energy] \t alphaQCD=" << evt->alphaQCD()
           << "\t alphaQED=" << evt->alphaQED() << endl;

      if (evt->pdf_info()) {
        cout << "PdfInfo: id1=" << evt->pdf_info()->id1()
             << " id2=" << evt->pdf_info()->id2()
             << " x1=" << evt->pdf_info()->x1()
             << " x2=" << evt->pdf_info()->x2()
             << " q=" << evt->pdf_info()->scalePDF()
             << " xpdf1=" << evt->pdf_info()->pdf1()
             << " xpdf2=" << evt->pdf_info()->pdf2()
             << endl;
      } else {
        cout << "PdfInfo: EMPTY";
      }

      // Print a legend to describe the particle info
      char particle_legend[120];
      sprintf( particle_legend,"     %9s %8s %-15s %4s %8s %8s   (%9s,%9s,%9s,%9s,%9s)",
               "Barcode","PDG ID","Name","Stat","ProdVtx","DecayVtx","Px","Py","Pz","E ","m");
      cout << endl;
      cout << "                                       GenParticle Legend\n" << particle_legend << "\n";
      // if (m_vertexinfo) {
      //   sprintf( particle_legend," %60s (%9s,%9s,%9s,%9s)"," ","Vx","Vy","Vz","Vct ");
      //   cout << particle_legend << endl;
      // }
      // cout << string(120, '_') << endl;

      // Print all particles
      // const HepPDT::ParticleDataTable* pdt = m_ppsvc->PDT();
      for (HepMC::GenEvent::particle_const_iterator p = evt->particles_begin(); p != evt->particles_end(); ++p) {
        int p_bcode = (*p)->barcode();
        int p_pdg_id = (*p)->pdg_id();
        double p_px = (*p)->momentum().px();
        double p_py = (*p)->momentum().py();
        double p_pz = (*p)->momentum().pz();
        double p_pe = (*p)->momentum().e();

        int p_stat = (*p)->status();
        int p_prodvtx = 0;
        if ((*p)->production_vertex() && (*p)->production_vertex()->barcode() != 0) {
          p_prodvtx = (*p)->production_vertex()->barcode();
        }
        int p_endvtx = 0;
        if ((*p)->end_vertex() && (*p)->end_vertex()->barcode() != 0) {
          p_endvtx=(*p)->end_vertex()->barcode();
        }
        // double v_x = 0;
        // double v_y = 0;
        // double v_z = 0;
        // double v_ct = 0;
        // if ((*p)->production_vertex()) {
        //   v_x = (*p)->production_vertex()->position().x();
        //   v_y = (*p)->production_vertex()->position().y();
        //   v_z = (*p)->production_vertex()->position().z();
        //   v_ct = (*p)->production_vertex()->position().t();
        // }

        // Mass (prefer generated mass if available)
        double p_mass = (*p)->generated_mass();
        if (p_mass == 0 && !(p_stat == 1 && p_pdg_id == 22)) p_mass = (*p)->momentum().m();

        // Particle names
        string sname = (_pnames.find(p_pdg_id) != _pnames.end()) ? _pnames[p_pdg_id] : "";
        const char* p_name = sname.c_str() ;

        char particle_entries[120];
        sprintf(particle_entries, " %9i %8i %-15s %4i %8i %8i   (%+9.3g,%+9.3g,%+9.3g,%+9.3g,%9.3g)",
                p_bcode, p_pdg_id, p_name, p_stat, p_prodvtx, p_endvtx, p_px, p_py, p_pz, p_pe, p_mass);
        cout << particle_entries << "\n";
        // if (m_vertexinfo) {
        //   sprintf(particle_entries," %60s (%+9.3g,%+9.3g,%+9.3g,%+9.3g)"," ",v_x, v_y, v_z, v_ct);
        //   cout << particle_entries << "\n";
        // }
      }

      cout << "\n" << endl;
      
      #endif // VERSION_CODE >= 3000000
    }


    /// Normalise histograms etc., after the run
    void finalize() {    }

    //@}

  private:

    map<long, string> _pnames;


  };



  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(MC_PRINTEVENT);

}