1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/WFinder.hh"
#include "Rivet/Projections/Beam.hh"
namespace Rivet {
/// @brief MC validation analysis for W polarisation
class MC_WPOL : public Analysis {
public:
/// @name Constructors etc.
//@{
/// Constructor
MC_WPOL()
: Analysis("MC_WPOL")
{ }
//@}
public:
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
FinalState fs;
WFinder wfinder(fs, Cuts::open(), PID::ELECTRON,
60.0*GeV, 100.0*GeV, 0.0*GeV, 0.0);
declare(wfinder, "WFinder");
Beam beams;
declare(beams, "Beams");
vector<string> tags{"_wplus", "_wminus"};
_h_dists.resize(tags.size());
_h_histos.resize(tags.size());
for (size_t i=0; i<tags.size(); ++i) {
_h_dists[i].resize(11,Profile1DPtr());
double sqrts = sqrtS()>0. ? sqrtS() : 14000.;
book(_h_dists[i][0] ,"A0"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][1] ,"A1"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][2] ,"A2"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][3] ,"A3"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][4] ,"A4"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][5] ,"A5"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][6] ,"A6"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][7] ,"A7"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][8] ,"fL"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][9] ,"fR"+tags[i],logspace(100, 1.0, 0.5*sqrts));
book(_h_dists[i][10] ,"f0"+tags[i],logspace(100, 1.0, 0.5*sqrts));
_h_histos[i].resize(4,Histo1DPtr());
book(_h_histos[i][0] ,"thetastar"+tags[i],100,-1.0,1.0);
book(_h_histos[i][1] ,"phistar"+tags[i],90,0.0,360.0);
book(_h_histos[i][2] ,"thetastar_ptw20"+tags[i],100,-1.0,1.0);
book(_h_histos[i][3] ,"phistar_ptw20"+tags[i],90,0.0,360.0);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const double weight = 1.0;
const WFinder& wfinder = apply<WFinder>(event, "WFinder");
if (wfinder.bosons().size() != 1) {
vetoEvent;
}
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
FourMomentum pb1(beams.second.momentum()), pb2(beams.first.momentum());
Particle lepton = wfinder.constituentLeptons()[0];
FourMomentum pl(lepton.momentum());
size_t idx = (PID::charge3(lepton.pid())>0 ? 0 : 1);
FourMomentum plnu(wfinder.bosons()[0].momentum());
const LorentzTransform cms = LorentzTransform::mkFrameTransformFromBeta(plnu.betaVec());
Matrix3 zrot(plnu.p3(), Vector3(0.0, 0.0, 1.0));
pl=cms.transform(pl);
pb1=cms.transform(pb1);
pb2=cms.transform(pb2);
Vector3 pl3=pl.p3();
Vector3 pb13=pb1.p3();
Vector3 pb23=pb2.p3();
pl3=zrot*pl3;
pb13=zrot*pb13;
pb23=zrot*pb23;
Vector3 xref(cos(pb13.theta())>cos(pb23.theta())?pb13:pb23);
Matrix3 xrot(Vector3(xref.x(), xref.y(), 0.0), Vector3(1.0, 0.0, 0.0));
pl3=xrot*pl3;
double ptw(wfinder.bosons()[0].pT()/GeV);
double thetas(pl3.theta()), phis(pl3.phi());
double costhetas(cos(thetas)), sinthetas(sin(thetas));
double cosphis(cos(phis)), sinphis(sin(phis));
if (phis<0.0) phis+=2.0*M_PI;
_h_histos[idx][0]->fill(costhetas,weight);
_h_histos[idx][1]->fill(phis*180.0/M_PI,weight);
if (ptw>20.0) {
_h_histos[idx][2]->fill(costhetas,weight);
_h_histos[idx][3]->fill(phis*180.0/M_PI,weight);
}
_h_dists[idx][0]->fill(ptw,10.0/3.0*(1.0-3.0*sqr(costhetas))+2.0/3.0,weight);
_h_dists[idx][1]->fill(ptw,10.0*sinthetas*costhetas*cosphis,weight);
_h_dists[idx][2]->fill(ptw,10.0*sqr(sinthetas)*(sqr(cosphis)-sqr(sinphis)),weight);
_h_dists[idx][3]->fill(ptw,4.0*sinthetas*cosphis,weight);
_h_dists[idx][4]->fill(ptw,4.0*costhetas,weight);
_h_dists[idx][5]->fill(ptw,4.0*sinthetas*sinphis,weight);
_h_dists[idx][6]->fill(ptw,10.0*costhetas*sinthetas*sinphis,weight);
_h_dists[idx][7]->fill(ptw,10.0*sqr(sinthetas)*cosphis*sinphis,weight);
_h_dists[idx][8]->fill(ptw,0.5*sqr(1.0-costhetas)-(1.0-2.0*sqr(costhetas)),weight);
_h_dists[idx][9]->fill(ptw,0.5*sqr(1.0+costhetas)-(1.0-2.0*sqr(costhetas)),weight);
_h_dists[idx][10]->fill(ptw,5.0*sqr(sinthetas)-3.0,weight);
}
/// Normalise histograms etc., after the run
void finalize() {
for (size_t i=0; i<_h_histos.size(); ++i) {
for (Histo1DPtr histo : _h_histos[i]) {
scale(histo, crossSection()/picobarn/sumOfWeights());
}
}
}
//@}
private:
/// @name Histograms
//@{
vector<vector<Profile1DPtr> > _h_dists;
vector<vector<Histo1DPtr> > _h_histos;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(MC_WPOL);
}
|