Rivet Analyses Reference

OPAL_2000_I513476

Event Shapes at 172, 183 and 189 GeV
Experiment: OPAL (LEP)
Inspire ID: 513476
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Eur.Phys.J. C16 (2000) 185-210
Beams: e- e+
Beam energies: (86.0, 86.0); (91.5, 91.5); (94.5, 94.5) GeV
Run details:
  • e+e- to hadrons. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Event shapes at 172, 183 and 189 GeV. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: OPAL_2000_I513476.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/ParisiTensor.hh"
#include "Rivet/Projections/Hemispheres.hh"

namespace Rivet {


  /// @brief  event shapes at 172, 183, 189
  class OPAL_2000_I513476 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(OPAL_2000_I513476);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      // Projections
      declare(Beam(), "Beams");
      const FinalState fs;
      declare(fs, "FS");
      const ChargedFinalState cfs;
      declare(cfs, "CFS");
      declare(FastJets(fs, FastJets::DURHAM, 0.7), "DurhamJets");
      declare(Sphericity(fs), "Sphericity");
      declare(ParisiTensor(fs), "Parisi");
      const Thrust thrust(fs);
      declare(thrust, "Thrust");
      declare(Hemispheres(thrust), "Hemispheres");

      // Book histograms
      int ih=-1;
      if (isCompatibleWithSqrtS(172.)) {
        ih = 1;
      } else if (isCompatibleWithSqrtS(183.)) {
        ih = 2;
      } else if (isCompatibleWithSqrtS(189.)) {
        ih = 3;
      }
      else {
        throw Error("Invalid CMS energy for OPAL_2000_I513476");
      }
      book(_h_thrust    ,  1,1,ih);
      book(_h_major     ,  2,1,ih);
      book(_h_minor     ,  3,1,ih);
      book(_h_aplanarity,  4,1,ih);
      book(_h_oblateness,  5,1,ih);
      book(_h_C         ,  6,1,ih);
      book(_h_rhoH      ,  7,1,ih);
      book(_h_sphericity,  8,1,ih);
      book(_h_totalB    ,  9,1,ih);
      book(_h_wideB     , 10,1,ih);
      book(_h_y23       , 11,1,ih);
      book(_h_mult      , 13,1,ih);
      book(_h_pTin      , 15,1,ih);
      book(_h_pTout     , 16,1,ih);
      book(_h_y         , 17,1,ih);
      book(_h_x         , 18,1,ih);
      book(_h_xi        , 19,1,ih);
      book(_sumW,"/TMP/sumW");
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
      const FinalState& cfs = apply<FinalState>(event, "CFS");
      if (cfs.size() < 2) vetoEvent;

      _sumW->fill();
      
      // Get beams and average beam momentum
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      const double meanBeamMom = ( beams.first.p3().mod() +
                                   beams.second.p3().mod() ) / 2.0;
      
      // Thrust related
      const Thrust& thrust = apply<Thrust>(event, "Thrust");
      _h_thrust    ->fill(thrust.thrust()     );
      _h_major     ->fill(thrust.thrustMajor());
      _h_minor     ->fill(thrust.thrustMinor());
      _h_oblateness->fill(thrust.oblateness() );

      // Sphericity related
      const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
      _h_sphericity->fill(sphericity.sphericity());
      _h_aplanarity->fill(sphericity.aplanarity());
      
      // C parameter
      const ParisiTensor& parisi = apply<ParisiTensor>(event, "Parisi");
      _h_C->fill(parisi.C());

      // Hemispheres
      const Hemispheres& hemi = apply<Hemispheres>(event, "Hemispheres");

      _h_rhoH  ->fill(hemi.scaledMhigh());
      _h_wideB ->fill(hemi.Bmax());
      _h_totalB->fill(hemi.Bsum());
      
      // Jets
      const FastJets& durjet = apply<FastJets>(event, "DurhamJets");
      const double y23 = durjet.clusterSeq()->exclusive_ymerge_max(2);
      _h_y23->fill(y23);

      // charged particles
      _h_mult->fill(cfs.particles().size());
      for (const Particle& p : cfs.particles()) {
        const Vector3 mom3  = p.p3();
        const double energy = p.E();
        const double pTinT  = dot(mom3, thrust.thrustMajorAxis());
        const double pToutT = dot(mom3, thrust.thrustMinorAxis());
      	_h_pTin ->fill(fabs(pTinT/GeV) );
      	_h_pTout->fill(fabs(pToutT/GeV));
        const double momT = dot(thrust.thrustAxis(), mom3);
        const double rapidityT = 0.5 * std::log((energy + momT) / (energy - momT));
      	_h_y->fill(fabs(rapidityT));
        const double mom = mom3.mod();
        const double scaledMom = mom/meanBeamMom;
        const double logInvScaledMom = -std::log(scaledMom);
        _h_xi->fill(logInvScaledMom);
        _h_x ->fill(scaledMom      );
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      scale(_h_thrust    ,1./ *_sumW);
      scale(_h_major     ,1./ *_sumW);
      scale(_h_minor     ,1./ *_sumW);
      scale(_h_aplanarity,1./ *_sumW);
      scale(_h_oblateness,1./ *_sumW);
      scale(_h_C         ,1./ *_sumW);
      scale(_h_rhoH      ,1./ *_sumW);
      scale(_h_sphericity,1./ *_sumW);
      scale(_h_totalB    ,1./ *_sumW);
      scale(_h_wideB     ,1./ *_sumW);
      scale(_h_y23       ,1./ *_sumW);
      scale(_h_mult      ,200./ *_sumW);
      scale(_h_pTin      ,1./ *_sumW);
      scale(_h_pTout     ,1./ *_sumW);
      scale(_h_y         ,1./ *_sumW);
      scale(_h_x         ,1./ *_sumW);
      scale(_h_xi        ,1./ *_sumW);
      // mean multiplicity
      double nch     = _h_mult->xMean();
      double nch_err = _h_mult->xStdErr();
      Scatter2DPtr m_ch;
      book(m_ch,14,1,1);
      m_ch->addPoint(sqrtS()/GeV,nch,0.,nch_err);
      // mean ptIn
      double pTin     = _h_pTin->xMean();
      double pTin_err = _h_pTin->xStdErr();
      Scatter2DPtr m_pTin;
      book(m_pTin,20,1,1);
      m_pTin->addPoint(sqrtS()/GeV,pTin,0.,pTin_err);
      // mean ptOut
      double pTout     = _h_pTout->xMean();
      double pTout_err = _h_pTout->xStdErr();
      Scatter2DPtr m_pTout;
      book(m_pTout,20,1,2);
      m_pTout->addPoint(sqrtS()/GeV,pTout,0.,pTout_err);
      // mean y
      double y     = _h_y->xMean();
      double y_err = _h_y->xStdErr();
      Scatter2DPtr m_y;
      book(m_y,20,1,3);
      m_y->addPoint(sqrtS()/GeV,y,0.,y_err);
      // mean x
      double x     = _h_x->xMean();
      double x_err = _h_x->xStdErr();
      Scatter2DPtr m_x;
      book(m_x,20,1,4);
      m_x->addPoint(sqrtS()/GeV,x,0.,x_err);
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_thrust,_h_major,_h_minor,_h_aplanarity,_h_oblateness,_h_C,_h_rhoH,_h_sphericity;
    Histo1DPtr _h_totalB,_h_wideB,_h_y23,_h_mult,_h_pTin,_h_pTout,_h_y,_h_x,_h_xi;
    CounterPtr _sumW;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(OPAL_2000_I513476);


}