1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#define I_KNOW_THE_INITIAL_QUARKS_PROJECTION_IS_DODGY_BUT_NEED_TO_USE_IT
#include "Rivet/Projections/InitialQuarks.hh"
namespace Rivet {
/// @brief multiplicities in u, d, s events
class OPAL_2001_I536266 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(OPAL_2001_I536266);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Projections
declare(Beam(), "Beams");
declare(ChargedFinalState(), "CFS");
declare(InitialQuarks(), "IQF");
book(_cDown , "/TMP/CDOWN" );
book(_cUp , "/TMP/CUP" );
book(_cStrange, "/TMP/CSTRANGE");
book(_wDown , "/TMP/WDOWN" );
book(_wUp , "/TMP/WUP" );
book(_wStrange, "/TMP/WSTRANGE");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
const FinalState& cfs = apply<FinalState>(event, "CFS");
if (cfs.size() < 2) vetoEvent;
int flavour = 0;
const InitialQuarks& iqf = apply<InitialQuarks>(event, "IQF");
// If we only have two quarks (qqbar), just take the flavour.
// If we have more than two quarks, look for the highest energetic q-qbar pair.
if (iqf.particles().size() == 2) {
flavour = iqf.particles().front().abspid();
}
else {
map<int, double> quarkmap;
for (const Particle& p : iqf.particles()) {
if (quarkmap[p.pid()] < p.E()) {
quarkmap[p.pid()] = p.E();
}
}
double maxenergy = 0.;
for (int i = 1; i <= 5; ++i) {
if (quarkmap[i]+quarkmap[-i] > maxenergy) {
flavour = i;
}
}
}
const size_t numParticles = cfs.particles().size();
switch (flavour) {
case 1:
_wDown->fill();
_cDown->fill(numParticles);
break;
case 2:
_wUp->fill();
_cUp->fill(numParticles);
break;
case 3:
_wStrange->fill();
_cStrange->fill(numParticles);
break;
}
}
/// Normalise histograms etc., after the run
void finalize() {
// calculate the averages and ratios
if(_wUp ->effNumEntries()!=0. ) scale( _cUp , 1./ *_wUp);
if(_wDown ->effNumEntries()!=0. ) scale( _cDown , 1./ *_wDown);
if(_wStrange ->effNumEntries()!=0. ) scale( _cStrange, 1./ *_wStrange);
for(unsigned int ix=1;ix<3;++ix) {
for(unsigned int iy=1;iy<4;++iy) {
double val;
std::pair<double,double> errs;
if(ix==1) {
CounterPtr cTemp;
if(iy==1) cTemp = _cUp;
else if(iy==2) cTemp = _cDown;
else if(iy==3) cTemp = _cStrange;
val = cTemp->val();
errs = make_pair(cTemp->err(),cTemp->err());
}
else {
Scatter1D temp;
if(iy==1) temp = *_cUp / *_cDown;
else if(iy==2) temp = *_cStrange/ *_cDown;
else if(iy==3) temp = *_cStrange/ *_cUp ;
val = temp.points()[0].x();
errs = temp.points()[0].xErrs();
}
Scatter2DPtr mult;
book(mult, ix, 1, iy);
mult->addPoint(45.6, val, make_pair(0.5,0.5), errs);
}
}
}
//@}
/// @name Multiplicities
//@{
CounterPtr _cDown;
CounterPtr _cUp;
CounterPtr _cStrange;
//@}
/// @name Weights
//@{
CounterPtr _wDown;
CounterPtr _wUp;
CounterPtr _wStrange;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(OPAL_2001_I536266);
}
|