1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"
namespace Rivet {
/// @brief kaon production at low energies
class PLUTO_1981_I165122 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(PLUTO_1981_I165122);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(FinalState(), "FS");
declare(UnstableParticles(), "UFS");
// Book histograms
book(_c_hadrons , "/TMP/sigma_hadrons");
book(_c_muons , "/TMP/sigma_muons");
book(_c_kaons , "/TMP/sigma_kaons");
book(_c_hadronsY, "/TMP/sigma_hadronsY");
book(_c_muonsY , "/TMP/sigma_muonsY");
book(_c_kaonsY , "/TMP/sigma_kaonsY");
if (isCompatibleWithSqrtS(9.4)) {
book(_h_spectrum1, 5, 1, 1);
}
else if (isCompatibleWithSqrtS(30.0, 1E-2)) {
book(_h_spectrum1, 4, 1, 1);
}
book(_h_spectrum2, 6, 1, 1);
}
/// Recursively walk the decay tree to find decay products of @a p
void findDecayProducts(Particle mother, Particles &kaons, Particles& stable) {
for(const Particle & p: mother.children()) {
const int id = p.pid();
if(id==130 || id ==310) {
kaons.push_back(p);
}
if (id==111 or p.children().empty())
stable.push_back(p);
else
findDecayProducts(p, kaons, stable);
}
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double meanBeamMom = ( beams.first.p3().mod() +
beams.second.p3().mod() ) / 2.0;
MSG_DEBUG("Avg beam momentum = " << meanBeamMom);
// Find the Upsilons among the unstables
const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
Particles upsilons = ufs.particles(Cuts::pid==553);
// Continuum
if (upsilons.empty()) {
MSG_DEBUG("No Upsilons found => continuum event");
// final state particles
const FinalState& fs = apply<FinalState>(event, "FS");
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : fs.particles()) {
nCount[p.pid()] += 1;
++ntotal;
}
// mu+mu- + photons
if(nCount[-13]==1 and nCount[13]==1 &&
ntotal==2+nCount[22])
_c_muons->fill();
// everything else
else
_c_hadrons->fill();
// unstable particles
for (const Particle& p : ufs.particles(Cuts::pid==130 or Cuts::pid==310)) {
if(_h_spectrum1) {
double xp = p.p3().mod()/meanBeamMom;
_h_spectrum1->fill(xp);
}
_c_kaons->fill();
}
}
else {
MSG_DEBUG("Upsilons found => resonance event");
for (const Particle& ups : upsilons) {
Particles kaons,stable;
// Find the decay products we want
findDecayProducts(ups, kaons, stable);
// boost to rest frame (if required)
LorentzTransform cms_boost;
if (ups.p3().mod() > 1*MeV)
cms_boost = LorentzTransform::mkFrameTransformFromBeta(ups.momentum().betaVec());
const double mass = ups.mass();
map<long,int> nCount;
int ntotal(0);
for (const Particle& p : stable) {
nCount[p.pid()] += 1;
++ntotal;
}
for( const Particle & kaon : kaons) {
const FourMomentum p2 = cms_boost.transform(kaon.momentum());
const double xp = 2.*p2.p3().mod()/mass;
_h_spectrum2->fill(xp);
_c_kaonsY->fill();
}
// mu+mu- + photons
if(nCount[-13]==1 and nCount[13]==1 &&
ntotal==2+nCount[22])
_c_muonsY->fill();
// everything else
else
_c_hadronsY->fill();
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
// energy dependent
for(unsigned int ix=1;ix<4;++ix) {
CounterPtr denom = (ix==1 || ix==3 ) ? _c_muons : _c_hadrons;
Scatter1D R = *_c_kaons/ *denom;
double rval = R.point(0).x();
pair<double,double> rerr = R.point(0).xErrs();
Scatter2D temphisto(refData(ix, 1, 1));
Scatter2DPtr mult;
book(mult,ix, 1, 1);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
if(x==9.458) {
if(_c_kaonsY->val()>0.) {
Scatter1D R2;
if(ix==1 ) {
R2 = *_c_kaonsY/ *_c_muonsY;
}
else if(ix==2) {
R2 = *_c_kaonsY/ *_c_hadronsY;
}
else if(ix==3) {
R2 = *_c_kaonsY/ *_c_muonsY;
}
mult ->addPoint(x, R2.point(0).x(), ex, R2.point(0).xErrs());
}
else {
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
else if (denom->numEntries()>0) {
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
mult ->addPoint(x, rval, ex, rerr);
}
else {
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
}
// normalize the spectra if required
if(_h_spectrum1) {
scale(_h_spectrum1, sqr(sqrtS())*crossSection()/microbarn/sumOfWeights());
}
if(_h_spectrum2) {
scale(_h_spectrum2, 1./_c_hadronsY->val());
}
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_spectrum1, _h_spectrum2;
CounterPtr _c_hadrons, _c_muons, _c_kaons;
CounterPtr _c_hadronsY, _c_muonsY, _c_kaonsY;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(PLUTO_1981_I165122);
}
|