Rivet Analyses Reference

PLUTO_1981_I165122

Ratio of the cross section for the production of $K^0_S$ to that for $\mu^+\mu^-$ between $3.6$ and $31.6$ GeV
Experiment: PLUTO (DORIS)
Inspire ID: 165122
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Lett. B104 (1981) 79-83, 1981
Beams: e- e+
Beam energies: ANY
Run details:
  • e+ e- to hadrons and e+ e- to mu+ mu- (for normalization) Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Ratio of the cross section for the production of $K^0_S$ to that for $\mu^+\mu^-$ between $3.6$ and $31.6$ GeV. The average number of $K^0$ per hadronic event is also provided for some energies, together with the kaon spectrum at 9.4 and 31.6 GeV. N.B. The point at $9.45\to9.456$ GeV is from the $\Upsilon(1S)$ resonance. Beam energy must be specified as analysis option "ENERGY" when rivet-merging samples.

Source code: PLUTO_1981_I165122.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief kaon production at low energies
  class PLUTO_1981_I165122 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(PLUTO_1981_I165122);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(FinalState(), "FS");
      declare(UnstableParticles(), "UFS");
      
      // Book histograms
      book(_c_hadrons , "/TMP/sigma_hadrons");
      book(_c_muons   , "/TMP/sigma_muons");
      book(_c_kaons   , "/TMP/sigma_kaons");
      book(_c_hadronsY, "/TMP/sigma_hadronsY");
      book(_c_muonsY  , "/TMP/sigma_muonsY");
      book(_c_kaonsY  , "/TMP/sigma_kaonsY");
      if (isCompatibleWithSqrtS(9.4)) {
        book(_h_spectrum1, 5, 1, 1);
      }
      else if (isCompatibleWithSqrtS(30.0, 1E-2)) {
        book(_h_spectrum1, 4, 1, 1);
      }
      book(_h_spectrum2, 6, 1, 1);
    }

    /// Recursively walk the decay tree to find decay products of @a p
    void findDecayProducts(Particle mother, Particles &kaons, Particles& stable) {
      for(const Particle & p: mother.children()) {
        const int id = p.pid();
        if(id==130 || id ==310) {
          kaons.push_back(p);
        }
        if (id==111 or p.children().empty())
          stable.push_back(p);
        else
          findDecayProducts(p, kaons, stable);
      }
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // Get beams and average beam momentum
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      const double meanBeamMom = ( beams.first.p3().mod() +
                                   beams.second.p3().mod() ) / 2.0;
      MSG_DEBUG("Avg beam momentum = " << meanBeamMom);
      // Find the Upsilons among the unstables
      const UnstableParticles& ufs = apply<UnstableParticles>(event, "UFS");
      Particles upsilons = ufs.particles(Cuts::pid==553);
      // Continuum
      if (upsilons.empty()) {
        MSG_DEBUG("No Upsilons found => continuum event");
	// final state particles
	const FinalState& fs = apply<FinalState>(event, "FS");
	map<long,int> nCount;
	int ntotal(0);
	for (const Particle& p : fs.particles()) {
	  nCount[p.pid()] += 1;
	  ++ntotal;
	}
	// mu+mu- + photons
	if(nCount[-13]==1 and nCount[13]==1 &&
	   ntotal==2+nCount[22])
	  _c_muons->fill();
	// everything else
	else
	  _c_hadrons->fill();
	// unstable particles
	for (const Particle& p : ufs.particles(Cuts::pid==130 or Cuts::pid==310)) {
	  if(_h_spectrum1) {
	    double xp = p.p3().mod()/meanBeamMom;
	    _h_spectrum1->fill(xp);
	  }
	  _c_kaons->fill();
	}
      }
      else {
        MSG_DEBUG("Upsilons found => resonance event");
        for (const Particle& ups : upsilons) {
          Particles kaons,stable;
          // Find the decay products we want
          findDecayProducts(ups, kaons, stable);
	  // boost to rest frame (if required)
          LorentzTransform cms_boost;
          if (ups.p3().mod() > 1*MeV)
            cms_boost = LorentzTransform::mkFrameTransformFromBeta(ups.momentum().betaVec());
          const double mass = ups.mass();

	  map<long,int> nCount;
	  int ntotal(0);
	  for (const Particle& p : stable) {
	    nCount[p.pid()] += 1;
	    ++ntotal;
	  }
	  for( const Particle & kaon : kaons) {
            const FourMomentum p2 = cms_boost.transform(kaon.momentum());
            const double xp = 2.*p2.p3().mod()/mass;
	    _h_spectrum2->fill(xp);
	    _c_kaonsY->fill();
	  }
	  // mu+mu- + photons
	  if(nCount[-13]==1 and nCount[13]==1 &&
	     ntotal==2+nCount[22])
	    _c_muonsY->fill();
	  // everything else
	  else
	    _c_hadronsY->fill();
	}
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      // energy dependent
      for(unsigned int ix=1;ix<4;++ix) {
	CounterPtr denom = (ix==1 || ix==3 ) ? _c_muons : _c_hadrons;
	Scatter1D R = *_c_kaons/ *denom;
	double              rval = R.point(0).x();
	pair<double,double> rerr = R.point(0).xErrs();
	Scatter2D temphisto(refData(ix, 1, 1));
	Scatter2DPtr mult;
	book(mult,ix, 1, 1);
	for (size_t b = 0; b < temphisto.numPoints(); b++) {
	  const double x  = temphisto.point(b).x();
	  pair<double,double> ex = temphisto.point(b).xErrs();
	  if(x==9.458) {
	    if(_c_kaonsY->val()>0.) {
	      Scatter1D R2;
	      if(ix==1 ) {
		R2 = *_c_kaonsY/ *_c_muonsY;
	      }
	      else if(ix==2) {
		R2 = *_c_kaonsY/ *_c_hadronsY;
	      }
	      else if(ix==3) {
		R2 = *_c_kaonsY/ *_c_muonsY;
	      }
	      mult   ->addPoint(x, R2.point(0).x(), ex, R2.point(0).xErrs());
	    }
	    else {
	      mult   ->addPoint(x, 0., ex, make_pair(0.,.0));
	    }
	  }
	  else if (denom->numEntries()>0) {
	    pair<double,double> ex2 = ex;
	    if(ex2.first ==0.) ex2. first=0.0001;
	    if(ex2.second==0.) ex2.second=0.0001;
	    
	    if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second)) {
	      mult   ->addPoint(x, rval, ex, rerr);
	    }
	    else {
	      mult   ->addPoint(x, 0., ex, make_pair(0.,.0));
	    }
	  }
	}
      }
      // normalize the spectra if required
      if(_h_spectrum1) {
	scale(_h_spectrum1, sqr(sqrtS())*crossSection()/microbarn/sumOfWeights());
      }
      if(_h_spectrum2) {
	scale(_h_spectrum2, 1./_c_hadronsY->val());
      }
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_spectrum1, _h_spectrum2;
    CounterPtr _c_hadrons, _c_muons, _c_kaons;
    CounterPtr _c_hadronsY, _c_muonsY, _c_kaonsY;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(PLUTO_1981_I165122);


}