1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
/// @brief average pT w.r.t. thrust and sphericity axes
class PLUTO_1983_I191161 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(PLUTO_1983_I191161);
/// @name Analysis methods
/// @{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
const FinalState fs;
declare(fs, "FS");
declare(ChargedFinalState(), "CFS");
// Thrust
const Thrust thrust(fs);
declare(thrust, "Thrust");
const Sphericity sphericity(fs);
declare(sphericity, "Sphericity");
sqs = 1.0;
if (isCompatibleWithSqrtS(7.7)) sqs = 7.7;
else if (isCompatibleWithSqrtS(9.4)) sqs = 9.4;
else if (isCompatibleWithSqrtS(12.)) sqs = 12.;
else if (isCompatibleWithSqrtS(13.)) sqs = 13.;
else if (isCompatibleWithSqrtS(17.)) sqs = 17.;
else if (isCompatibleWithSqrtS(22.)) sqs = 22.;
else if (isCompatibleWithSqrtS(27.6)) sqs = 27.6;
else if (isCompatibleWithSqrtS(30.8)) sqs = 30.8;
else MSG_ERROR("Beam energy " << sqrtS() << " not supported!");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// at least 4 charged particles
if (apply<ChargedFinalState>(event, "CFS").particles().size()<4) vetoEvent;
// Sphericities
MSG_DEBUG("Calculating sphericity");
const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
MSG_DEBUG("Calculating thrust");
const Thrust& thrust = apply<Thrust>(event, "Thrust");
const FinalState & fs = apply<FinalState>(event, "FS");
// remove pi0->gammagamma decay products and replace with the pi0s
// needed to get the average pTs right
Particles fsParticles;
set<ConstGenParticlePtr> pi0;
for(const Particle & p : fs.particles()) {
if ((p.pid()!=PID::PHOTON && p.abspid()!=PID::ELECTRON)|| p.parents().empty() || p.parents()[0].pid()!=PID::PI0)
fsParticles.push_back(p);
else {
if (pi0.find(p.parents()[0].genParticle())==pi0.end())
fsParticles.push_back(p.parents()[0]);
}
}
double pT_T_sum(0.),pT2_T_sum(0.);
double pT_S_sum(0.),pT2_S_sum(0.);
for(const Particle & p : fsParticles) {
const Vector3 mom3 = p.p3();
const double pTinT = dot(mom3, thrust.thrustMajorAxis());
const double pToutT = dot(mom3, thrust.thrustMinorAxis());
const double pTinS = dot(mom3, sphericity.sphericityMajorAxis());
const double pToutS = dot(mom3, sphericity.sphericityMinorAxis());
const double pT2_T = sqr(pTinT) + sqr(pToutT);
const double pT2_S = sqr(pTinS) + sqr(pToutS);
const double pT_T = sqrt(pT2_T);
const double pT_S = sqrt(pT2_S);
pT_T_sum += sqrt(pT2_T);
pT2_T_sum += pT2_T ;
pT_S_sum += sqrt(pT2_S);
pT2_S_sum += pT2_S ;
_p_thrust_pt .fill(pT_T /MeV );
_p_thrust_pt2 .fill(pT2_T/1e3/sqr(MeV));
_p_sphere_pt .fill(pT_S /MeV );
_p_sphere_pt2 .fill(pT2_S/1e3/sqr(MeV));
}
_p_thrust_sum_pt .fill(pT_T_sum /GeV );
_p_thrust_sum_pt2 .fill(pT2_T_sum/GeV );
_p_sphere_sum_pt .fill(pT_S_sum /GeV );
_p_sphere_sum_pt2 .fill(pT2_S_sum/GeV );
}
/// Normalise histograms etc., after the run
void finalize() {
for(unsigned int ix=1;ix<3;++ix) {
for(unsigned int iy=1;iy<5;++iy) {
double value = 0.0, error = 0.0;
if (ix==1) {
if (iy==1) {
value = _p_thrust_pt.xMean();
error = _p_thrust_pt.xStdErr();
}
else if (iy==2) {
value = _p_thrust_pt2.xMean();
error = _p_thrust_pt2.xStdErr();
}
else if (iy==3) {
value = _p_thrust_sum_pt.xMean();
error = _p_thrust_sum_pt.xStdErr();
}
else if (iy==4) {
value = _p_thrust_sum_pt2.xMean();
error = _p_thrust_sum_pt2.xStdErr();
}
}
else {
if (iy==1) {
value = _p_sphere_pt.xMean();
error = _p_sphere_pt.xStdErr();
}
else if (iy==2) {
value = _p_sphere_pt2.xMean();
error = _p_sphere_pt2.xStdErr();
}
else if (iy==3) {
value = _p_sphere_sum_pt.xMean();
error = _p_sphere_sum_pt.xStdErr();
}
else if (iy==4) {
value = _p_sphere_sum_pt2.xMean();
error = _p_sphere_sum_pt2.xStdErr();
}
}
Scatter2D temphisto(refData(ix, 1, iy));
Scatter2DPtr mult;
book(mult, ix, 1, iy);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if (ex2.first ==0.) ex2. first=0.0001;
if (ex2.second==0.) ex2.second=0.0001;
if (inRange(sqs, x-ex2.first, x+ex2.second)) {
mult->addPoint(x, value, ex, make_pair(error,error));
}
else {
mult->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
}
}
}
/// @}
/// @name Histograms
//@{
YODA::Dbn1D _p_thrust_pt, _p_thrust_pt2, _p_thrust_sum_pt, _p_thrust_sum_pt2;
YODA::Dbn1D _p_sphere_pt, _p_sphere_pt2, _p_sphere_sum_pt, _p_sphere_sum_pt2;
double sqs;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(PLUTO_1983_I191161);
}
|