1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/ParisiTensor.hh"
#include "Rivet/Projections/Hemispheres.hh"
#include <cmath>
#define I_KNOW_THE_INITIAL_QUARKS_PROJECTION_IS_DODGY_BUT_NEED_TO_USE_IT
#include "Rivet/Projections/InitialQuarks.hh"
namespace Rivet {
/// @brief SLD multiplicities at mZ
///
/// @author Peter Richardson
class SLD_1996_S3398250 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(SLD_1996_S3398250);
/// @name Analysis methods
/// @{
void init() {
// Projections
declare(Beam(), "Beams");
declare(ChargedFinalState(), "CFS");
declare(InitialQuarks(), "IQF");
book(_h_bottom ,1, 1, 1);
book(_h_charm ,2, 1, 1);
book(_h_light ,3, 1, 1);
book(_weightLight, "_weightLight");
book(_weightCharm, "_weightCharm");
book(_weightBottom, "_weightBottom");
book(scatter_c, 4,1,1);
book(scatter_b, 5,1,1);
}
void analyze(const Event& event) {
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
const FinalState& cfs = apply<FinalState>(event, "CFS");
if (cfs.size() < 2) vetoEvent;
int flavour = 0;
const InitialQuarks& iqf = apply<InitialQuarks>(event, "IQF");
// If we only have two quarks (qqbar), just take the flavour.
// If we have more than two quarks, look for the highest energetic q-qbar pair.
if (iqf.particles().size() == 2) {
flavour = iqf.particles().front().abspid();
}
else {
map<int, double> quarkmap;
for (const Particle& p : iqf.particles()) {
if (quarkmap[p.pid()] < p.E()) {
quarkmap[p.pid()] = p.E();
}
}
double maxenergy = 0.;
for (int i = 1; i <= 5; ++i) {
if (quarkmap[i]+quarkmap[-i] > maxenergy) {
flavour = i;
}
}
}
const size_t numParticles = cfs.particles().size();
switch (flavour) {
case 1: case 2: case 3:
_weightLight ->fill();
_h_light->fillBin(0, numParticles);
break;
case 4:
_weightCharm ->fill();
_h_charm->fillBin(0, numParticles);
break;
case 5:
_weightBottom->fill();
_h_bottom->fillBin(0, numParticles);
break;
}
}
void multiplicity_subtract(const Histo1DPtr first, const Histo1DPtr second, Scatter2DPtr & scatter) {
const double x = first->bin(0).xMid();
const double ex = first->bin(0).xWidth()/2.;
const double y = first->bin(0).area() - second->bin(0).area();
const double ey = sqrt(sqr(first->bin(0).areaErr()) + sqr(second->bin(0).areaErr()));
scatter->addPoint(x, y, ex, ey);
}
void finalize() {
if (_weightBottom->val() != 0) scale(_h_bottom, 1./ *_weightBottom);
if (_weightCharm->val() != 0) scale(_h_charm, 1./ *_weightCharm );
if (_weightLight->val() != 0) scale(_h_light, 1./ *_weightLight );
multiplicity_subtract(_h_charm, _h_light, scatter_c);
multiplicity_subtract(_h_bottom, _h_light, scatter_b);
}
/// @}
private:
/// Histograms
Scatter2DPtr scatter_c, scatter_b;
Histo1DPtr _h_bottom, _h_charm, _h_light;
/// Weights
CounterPtr _weightLight, _weightCharm, _weightBottom;
};
RIVET_DECLARE_ALIASED_PLUGIN(SLD_1996_S3398250, SLD_1996_I422172);
}
|