Rivet Analyses Reference

STAR_2009_UE_HELEN

UE measurement in $pp$ at 200 GeV
Experiment: STAR (RHIC)
Spires ID: None
Status: PRELIMINARY
Authors:
  • Helen Caines
  • Hendrik Hoeth
References:Beams: p+ p+
Beam energies: (100.0, 100.0) GeV
Run details:
  • $pp$ at 200 GeV

WARNING! Mark as "STAR preliminary" and contact authors when using this! UE analysis similar to Rick Field's leading jet analysis. SIScone with radius/resolution parameter R=0.7 is used. Particles with $pT > 0.2 \text{GeV}$ and $|\eta| < 1$ are included in the analysis. All particles are assumed to have zero mass. Only jets with neutral energy $< 0.7$ are included. For the transMIN and transMAX $\Delta(\phi)$ is between $\pi/3$ and $2\pi/3$, and $\Delta(\eta) < 2.0$. For the jet region the area of the jet is used for the normalization, i.e. the scaling factor is $\pi R^2$ and not $\mathrm{d}\phi\mathrm{d}\eta$ (this is different from what Rick Field does!). The tracking efficiency is $\sim 0.8$, but that is an approximation, as below $pT \sim 0.6 \text{GeV}$ it is falling quite steeply.

Source code: STAR_2009_UE_HELEN.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
#include "Rivet/Projections/NeutralFinalState.hh"
#include "Rivet/Projections/MergedFinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "fastjet/SISConePlugin.hh"

namespace Rivet {


  /// @brief STAR underlying event
  /// @author Hendrik Hoeth
  class STAR_2009_UE_HELEN : public Analysis {
  public:

    /// Constructor
    STAR_2009_UE_HELEN()
      : Analysis("STAR_2009_UE_HELEN")
    {
    }


    /// @name Analysis methods
    //@{

    void init() {
      // Charged final state, |eta|<1, pT>0.2GeV
      const Cut c = Cuts::etaIn(-1.0, 1.0) && Cuts::pT >= 0.2*GeV;

      const ChargedFinalState cfs(c);
      declare(cfs, "CFS");

      // Neutral final state, |eta|<1, ET>0.2GeV (needed for the jets)
      const NeutralFinalState nfs(c);
      declare(nfs, "NFS");

      // STAR can't see neutrons and K^0_L
      VetoedFinalState vfs(nfs);
      vfs.vetoNeutrinos();
      vfs.addVetoPairId(PID::K0L);
      vfs.addVetoPairId(PID::NEUTRON);
      declare(vfs, "VFS");

      // Jets are reconstructed from charged and neutral particles,
      // and the cuts are different (pT vs. ET), so we need to merge them.
      const MergedFinalState jfs(cfs, vfs);
      declare(jfs, "JFS");

      // SISCone, R = 0.7, overlap_threshold = 0.75
      declare(FastJets(jfs, FastJets::SISCONE, 0.7), "AllJets");

      // Book histograms
      book(_hist_pmaxnchg   , 1, 1, 1);
      book(_hist_pminnchg   , 2, 1, 1);
      book(_hist_anchg      , 3, 1, 1);
    }


    // Do the analysis
    void analyze(const Event& e) {
      const FinalState& cfs = apply<ChargedFinalState>(e, "CFS");
      if (cfs.particles().size() < 1) {
        MSG_DEBUG("Failed multiplicity cut");
        vetoEvent;
      }

      const Jets& alljets = apply<FastJets>(e, "AllJets").jetsByPt();
      MSG_DEBUG("Total jet multiplicity = " << alljets.size());

      // The jet acceptance region is |eta|<(1-R)=0.3  (with R = jet radius)
      // Jets also must have a neutral energy fraction of < 0.7
      Jets jets;
      for (const Jet & jet : alljets) {
        if (jet.neutralEnergy()/jet.totalEnergy() < 0.7 &&
	    jet.abseta() < 0.3)
          jets.push_back(jet);
      }

      // This analysis requires a di-jet like event.
      // WARNING: There is more data in preparation, some of which
      //          does _not_ have this constraint!
      if (jets.size() != 2) {
        MSG_DEBUG("Failed jet multiplicity cut");
        vetoEvent;
      }

      // The di-jet constraints in this analysis are:
      // - 2 and only 2 jets in the acceptance region
      // - delta(Phi) between the jets is > 150 degrees
      // - Pt_awayjet/Pt_towards_jet > 0.7
      if (deltaPhi(jets[0].phi(), jets[1].phi()) <= 5*PI/6 ||
          jets[1].pT()/jets[0].pT() <= 0.7)
      {
        MSG_DEBUG("Failed di-jet criteria");
        vetoEvent;
      }

      // Now lets start ...
      const double jetphi = jets[0].phi();
      const double jetpT  = jets[0].pT();

      size_t numTrans1(0), numTrans2(0), numAway(0);

      // Calculate all the charged stuff
      for (const Particle& p : cfs.particles()) {
        const double dPhi = deltaPhi(p.phi(), jetphi);
        const double pT = p.pT();
        const double phi = p.phi();
        double rotatedphi = phi - jetphi;
        while (rotatedphi < 0) rotatedphi += 2*PI;

        // @TODO: WARNING: The following lines are a hack to correct
        //        for the STAR tracking efficiency. Once we have the
        //        final numbers (corrected to hadron level), we need
        //        to remove this!!!!
        if (1.0*rand()/static_cast<double>(RAND_MAX) > 0.87834-exp(-1.48994-0.788432*pT)) {
          continue;
        }
        // -------- end of efficiency hack -------

        if (dPhi < PI/3.0) {
          // toward
        }
        else if (dPhi < 2*PI/3.0) {
          if (rotatedphi <= PI) {
            ++numTrans1;
          }
          else {
            ++numTrans2;
          }
        }
        else {
          ++numAway;
        }
      } // end charged particle loop

      // Fill the histograms
      _hist_pmaxnchg->fill(jetpT, (numTrans1>numTrans2 ? numTrans1 : numTrans2)/(2*PI/3));
      _hist_pminnchg->fill(jetpT, (numTrans1<numTrans2 ? numTrans1 : numTrans2)/(2*PI/3));
      _hist_anchg->fill(jetpT, numAway/(PI*0.7*0.7)); // jet area = pi*R^2

    }


    void finalize() {
      //
    }

    //@}


  private:

    Profile1DPtr _hist_pmaxnchg;
    Profile1DPtr _hist_pminnchg;
    Profile1DPtr _hist_anchg;

  };



  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(STAR_2009_UE_HELEN);

}