1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/Beam.hh"
namespace Rivet {
/// @brief pi, K and proton spectra at 14,22 and 34 GeV
class TASSO_1983_I181470 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(TASSO_1983_I181470);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(FinalState(), "FS");
vector<int> hist1,hist2;
sqs = 1.;
if(isCompatibleWithSqrtS(14.)) {
hist1 = {19,21,23};
hist2 = {20,22,24};
sqs = 14.;
}
else if (isCompatibleWithSqrtS(22.)) {
hist1 = {25,27,11};
hist2 = {26,10,12};
sqs = 22.;
}
else if (isCompatibleWithSqrtS(34.)) {
hist1 = {13,15,17};
hist2 = {14,16,18};
sqs = 34.;
}
else
MSG_WARNING("CoM energy of events sqrt(s) = " << sqrtS()/GeV
<< " doesn't match any available analysis energy .");
book(_h_p_pi , hist1[0],1,1);
book(_h_p_K , hist1[1],1,1);
book(_h_p_p , hist1[2],1,1);
book(_h_x_pi , hist2[0],1,1);
book(_h_x_K , hist2[1],1,1);
book(_h_x_p , hist2[2],1,1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
// First, veto on leptonic events by requiring at least 4 charged FS particles
const FinalState& fs = apply<FinalState>(event, "FS");
const size_t numParticles = fs.particles().size();
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
if (numParticles < 2) {
MSG_DEBUG("Failed leptonic event cut");
vetoEvent;
}
MSG_DEBUG("Passed leptonic event cut");
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double meanBeamMom = ( beams.first.p3().mod() +
beams.second.p3().mod() ) / 2.0;
MSG_DEBUG("Avg beam momentum = " << meanBeamMom);
for (const Particle& p : fs.particles()) {
double xE = p.E()/meanBeamMom;
if(abs(p.pid())==211) {
_h_p_pi->fill(p.p3().mod());
_h_x_pi->fill(xE );
}
else if(abs(p.pid())==321) {
_h_p_K->fill(p.p3().mod());
_h_x_K->fill(xE );
}
else if(abs(p.pid())==2212) {
_h_p_p->fill(p.p3().mod());
_h_x_p->fill(xE );
}
}
}
/// Normalise histograms etc., after the run
void finalize() {
double fact1 = crossSection()/nanobarn/sumOfWeights();
double fact2 = sqr(sqs)/GeV2*crossSection()/microbarn/sumOfWeights();
scale(_h_p_pi, fact1);
scale(_h_p_K , fact1);
scale(_h_p_p , fact1);
scale(_h_x_pi, fact2);
scale(_h_x_K , fact2);
scale(_h_x_p , fact2);
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_p_pi,_h_p_K,_h_p_p;
Histo1DPtr _h_x_pi,_h_x_K,_h_x_p;
double sqs;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(TASSO_1983_I181470);
}
|