1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
/// @brief event shapes at 35 GeV
class TASSO_1988_I263859 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(TASSO_1988_I263859);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
const ChargedFinalState cfs;
declare(cfs, "CFS");
// Thrust and sphericity
declare(Beam(), "Beams");
declare(Thrust(cfs), "Thrust");
declare(Sphericity(cfs), "Sphericity");
// Book histograms
book(_h_sphericity, 1, 1, 1);
book(_h_aplanarity, 2, 1, 1);
book(_h_thrust , 3, 1, 1);
book(_h_pTin2 , 4, 1, 1);
book(_h_pTout2 , 5, 1, 1);
book(_h_ncharged , 6, 1, 1);
book(_h_pTin , 7, 1, 1);
book(_h_pTout , 8, 1, 1);
book(_h_pT , 9, 1, 1);
book(_h_x , 10, 1, 1);
book(_h_rap , 11, 1, 1);
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const ChargedFinalState& cfs = apply<ChargedFinalState>(event, "CFS");
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double meanBeamMom = ( beams.first.p3().mod() +
beams.second.p3().mod() ) / 2.0;
const Thrust& thrust = apply<Thrust>(event, "Thrust");
const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
_h_sphericity->fill(sphericity.sphericity());
_h_aplanarity->fill(sphericity.aplanarity());
_h_thrust ->fill(thrust.thrust());
double pTin2sum(0.), pTout2sum(0.);
for (const Particle& p : cfs.particles()) {
// Get momentum and energy of each particle.
const Vector3 mom3 = p.p3();
const double energy = p.E();
// Scaled momenta.
const double mom = mom3.mod();
const double scaledMom = mom/meanBeamMom;
_h_x->fill(scaledMom);
const double momS = dot(sphericity.sphericityAxis(), mom3);
const double pTinS = dot(mom3, sphericity.sphericityMajorAxis());
const double pToutS = dot(mom3, sphericity.sphericityMinorAxis());
const double pT = sqrt(pow(pTinS, 2) + pow(pToutS, 2));
const double rapidityS = 0.5 * std::log((energy + momS) / (energy - momS));
pTin2sum += sqr(pTinS);
pTout2sum += sqr(pToutS);
_h_pTin ->fill(abs(pTinS)/GeV );
_h_pTout->fill(abs(pToutS)/GeV);
_h_pT ->fill(pT/GeV );
_h_rap ->fill(abs(rapidityS) );
}
unsigned int nCharged = cfs.particles().size();
_h_ncharged->fill(nCharged);
if (nCharged) {
_h_pTin2 ->fill(pTin2sum /nCharged);
_h_pTout2->fill(pTout2sum/nCharged);
}
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_sphericity , 1./sumOfWeights());
scale(_h_aplanarity , 1./sumOfWeights());
scale(_h_thrust , 1./sumOfWeights());
scale(_h_pTin2 , 1./sumOfWeights());
scale(_h_pTout2 , 1./sumOfWeights());
scale(_h_ncharged , 2000./sumOfWeights());
scale(_h_pTin , 1./sumOfWeights());
scale(_h_pTout , 1./sumOfWeights());
scale(_h_pT , 1./sumOfWeights());
scale(_h_x , 1./sumOfWeights());
scale(_h_rap , 1./sumOfWeights());
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_sphericity, _h_aplanarity, _h_thrust, _h_pTin2, _h_pTout2, _h_ncharged,
_h_pTin, _h_pTout, _h_pT, _h_x, _h_rap;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(TASSO_1988_I263859);
}
|