1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
/// @brief K0 and K*+ spectra
class TASSO_1990_I284251 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(TASSO_1990_I284251);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
// Initialise and register projections
declare(Beam(), "Beams");
declare(UnstableParticles(), "UFS");
const ChargedFinalState cfs;
declare(cfs, "CFS");
declare(Sphericity(cfs), "Sphericity");
// Book histograms
_ih=-1; _iy=-1;
if(isCompatibleWithSqrtS(14.8)) {
_ih=1;
}
else if (isCompatibleWithSqrtS(21.5)) {
_ih=2;
}
else if (isCompatibleWithSqrtS(34.5)) {
_ih=0;
_iy=3;
}
else if (isCompatibleWithSqrtS(35.0)) {
_ih=0;
_iy=2;
}
else if (isCompatibleWithSqrtS(42.6)) {
_ih=0;
_iy=1;
}
else
MSG_ERROR("Beam energy " << sqrtS() << " not supported!");
if(_ih==0) {
book(_h_K0_x, 1,1,_iy);
if(_iy!=3) {
book(_p_K0_S_1, 5,1,2*_iy-1);
book(_p_K0_S_2,"TMP/p_K0_S_2",refData(_ih+5,1,2*_iy));
}
book(_h_Kstar_x, 8,1,_iy);
if(_iy==2) {
book(_p_Kstar_S_1, 10,1,1);
book(_p_Kstar_S_2,"TMP/p_Kstar_S_2",refData(10,1,2));
}
}
else {
book(_h_K0_x , _ih+1,1,1);
book(_p_K0_S_1, _ih+5,1,1);
book(_p_K0_S_2,"TMP/p_K0_S_2",refData(_ih+5,1,2));
}
book(_n_K0 ,"/TMP/nK0" );
book(_n_Kstar,"/TMP/nKstar");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const ChargedFinalState& cfs = apply<ChargedFinalState>(event, "CFS");
const size_t numParticles = cfs.particles().size();
// Even if we only generate hadronic events, we still need a cut on numCharged >= 2.
if (numParticles < 2) {
MSG_DEBUG("Failed leptonic event cut");
vetoEvent;
}
MSG_DEBUG("Passed leptonic event cut");
// Get beams and average beam momentum
const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
const double meanBeamMom = ( beams.first.p3().mod() +
beams.second.p3().mod() ) / 2.0;
const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
unsigned int nK0(0),nKstar(0);
UnstableParticles ufs = apply<UnstableParticles>(event,"UFS");
for(const Particle & p : ufs.particles(Cuts::abspid==323 or Cuts::pid==130 or Cuts::pid==310)) {
double xE = p.E()/meanBeamMom;
double modp = p.p3().mod();
double beta = modp/p.E();
if(abs(p.pid())==323) {
if(_h_Kstar_x!=Histo1DPtr()) _h_Kstar_x->fill(xE,1./beta);
++nKstar;
}
else {
if(_h_K0_x!=Histo1DPtr()) _h_K0_x->fill(xE,1./beta);
++nK0;
}
}
_n_K0->fill(nK0);
_n_Kstar->fill(nKstar);
double sphere = sphericity.sphericity();
if(_p_K0_S_1!=Profile1DPtr()) {
_p_K0_S_1->fill(sphere,nK0);
_p_K0_S_2->fill(sphere,cfs.particles().size());
}
if(_p_Kstar_S_1!=Profile1DPtr()) {
_p_Kstar_S_1->fill(sphere,nKstar);
_p_Kstar_S_2->fill(sphere,cfs.particles().size());
}
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_K0_x, sqr(sqrtS())*crossSection()/microbarn/sumOfWeights());
if(_h_Kstar_x!=Histo1DPtr())
scale(_h_Kstar_x, sqr(sqrtS())*crossSection()/nanobarn/sumOfWeights());
if(_p_K0_S_1!=Profile1DPtr()) {
Scatter2DPtr temp;
if(_ih==0)
book(temp,5,1,2*_iy);
else
book(temp,_ih+5,1,2);
divide(_p_K0_S_1,_p_K0_S_2,temp);
}
if(_p_Kstar_S_1!=Profile1DPtr()) {
Scatter2DPtr temp;
book(temp,10,1,2);
divide(_p_Kstar_S_1,_p_Kstar_S_2,temp);
}
// K0 mult
scale(_n_K0 ,1./sumOfWeights());
Scatter2D temphisto(refData(4, 1, 1));
Scatter2DPtr mult;
book(mult, 4, 1, 1);
for (size_t b = 0; b < temphisto.numPoints(); b++) {
const double x = temphisto.point(b).x();
pair<double,double> ex = temphisto.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second))
mult ->addPoint(x, _n_K0->val(), ex, make_pair(_n_K0->err(),_n_K0->err()));
else
mult ->addPoint(x, 0., ex, make_pair(0.,.0));
}
// K*= mult
scale(_n_Kstar,1./sumOfWeights());
Scatter2D temphisto2(refData(9, 1, 1));
Scatter2DPtr mult2;
book(mult2,9, 1, 1);
for (size_t b = 0; b < temphisto2.numPoints(); b++) {
const double x = temphisto2.point(b).x();
pair<double,double> ex = temphisto2.point(b).xErrs();
pair<double,double> ex2 = ex;
if(ex2.first ==0.) ex2. first=0.0001;
if(ex2.second==0.) ex2.second=0.0001;
if (inRange(sqrtS()/GeV, x-ex2.first, x+ex2.second))
mult2 ->addPoint(x, _n_Kstar->val(), ex, make_pair(_n_Kstar->err(),_n_Kstar->err()));
else
mult2 ->addPoint(x, 0., ex, make_pair(0.,.0));
}
}
//@}
/// @name Histograms
//@{
Histo1DPtr _h_K0_x, _h_Kstar_x;
Profile1DPtr _p_K0_S_1, _p_K0_S_2, _p_Kstar_S_1, _p_Kstar_S_2;
CounterPtr _n_K0,_n_Kstar;
int _ih,_iy;
//@}
};
// The hook for the plugin system
RIVET_DECLARE_PLUGIN(TASSO_1990_I284251);
}
|