1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
| // -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/ChargedFinalState.hh"
namespace Rivet {
class TASSO_1990_S2148048 : public Analysis {
public:
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(TASSO_1990_S2148048);
/// @name Analysis methods
//@{
/// Book histograms and initialise projections before the run
void init() {
const ChargedFinalState cfs(Cuts::pT >= 0.1/GeV);
declare(cfs, "CFS");
// Thrust and sphericity
declare(Thrust(cfs), "Thrust");
declare(Sphericity(cfs), "Sphericity");
// Histos
int offset = 0;
switch (int(sqrtS()/GeV)) {
case 14:
offset = 0;
break;
case 22:
offset = 1;
break;
case 35:
offset = 2;
break;
case 44:
offset = 3;
break;
}
book(_h_xp[0] , 2, 1, 1+offset);
book(_h_xp[1] , 3, 1, 1+offset);
book(_h_xi , 4, 1, 1+offset);
book(_h_pT , 5, 1, 1+offset);
book(_h_sphericity , 6, 1, 1+offset);
book(_h_aplanarity , 7, 1, 1+offset);
book(_h_thrust , 8, 1, 1+offset);
book(_sumWPassed,"/TMP/_sumWPassed");
}
/// Perform the per-event analysis
void analyze(const Event& event) {
const ChargedFinalState& cfs = apply<ChargedFinalState>(event, "CFS");
// TASSO hadronic event selection TODO: move this into a trigger definition
// See page 2 in publication
// Condition 1) --- require at least 5 (4) 'good' tracks
int nch = cfs.particles().size();
if ( (int(sqrtS()/GeV) > 27 && nch < 5) || (int(sqrtS()/GeV) <= 27 && nch < 4 ) ) {
MSG_DEBUG("Failed # good tracks cut: " << nch);
vetoEvent;
}
// Condition 2) ---
// Condition 5) --- scalar momentum (not pT!!!) sum >= 0.265*s
double momsum = 0.0;
for (const Particle& p : cfs.particles()) {
const double mom = p.p3().mod();
momsum += mom;
}
if (momsum <=0.265 * sqrtS()/GeV) {
MSG_DEBUG("Failed pTsum cut: " << momsum << " < " << 0.265 * sqrtS()/GeV);
vetoEvent;
}
// Raise counter for events that pass trigger conditions
_sumWPassed->fill();
const Thrust& thrust = apply<Thrust>(event, "Thrust");
//const Vector3 & thrustAxis = thrust.thrustAxis ();
//double theta = thrustAxis.theta();
//if ( fabs(cos(theta)) >= 0.8 ) {
//MSG_DEBUG("Failed thrust angle cut: " << fabs(cos(theta)));
//vetoEvent;
//}
const Sphericity& sphericity = apply<Sphericity>(event, "Sphericity");
// Fill histograms in order of appearance in paper
for (const Particle& p : cfs.particles()) {
// Get momentum and energy of each particle.
const Vector3 mom3 = p.p3();
// Scaled momenta.
const double mom = mom3.mod();
const double scaledMom = 2.*mom/sqrtS();
const double pTin = dot(mom3, sphericity.sphericityMajorAxis());
const double pTout = dot(mom3, sphericity.sphericityMinorAxis());
const double pT=sqrt(sqr(pTin)+sqr(pTout));
_h_xp[0]->fill(scaledMom);
_h_xp[1]->fill(scaledMom);
_h_xi ->fill(-log(scaledMom));
_h_pT ->fill(pT);
}
// event shapes
_h_sphericity->fill(sphericity.sphericity());
_h_aplanarity->fill(sphericity.aplanarity());
_h_thrust->fill(thrust.thrust());
}
/// Normalise histograms etc., after the run
void finalize() {
scale(_h_xp[0], 1./ *_sumWPassed);
scale(_h_xp[1], 1./ *_sumWPassed);
scale(_h_xi , 1./ *_sumWPassed);
scale(_h_pT , 1./ *_sumWPassed);
normalize(_h_sphericity);
normalize(_h_aplanarity);
normalize(_h_thrust );
}
//@}
private:
/// @name Histograms
//@{
Histo1DPtr _h_xp[2], _h_xi, _h_pT, _h_sphericity, _h_aplanarity, _h_thrust;
CounterPtr _sumWPassed;
//@}
};
RIVET_DECLARE_ALIASED_PLUGIN(TASSO_1990_S2148048, TASSO_1990_I294755);
}
|