Rivet Analyses Reference

WA46_1984_I206647

Measurement of asymmetry in $\Omega^-$ decays
Experiment: WA46 ()
Inspire ID: 206647
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Nucl.Phys. B241 (1984) 1-47
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing Omega baryons

The WA46 experiment measured the asymmetry parameter in the decays $\Omega^-\to\Lambda^0K^-$, $\Omega^-\to\Xi^0\pi^-$ and $\Omega^-\to\Xi^-\pi^0$. In practice this is a fit to a normalised distribution $\frac12(1+\alpha\cos\theta)$. The paper only gives the number for the $\alpha$ parameter and not the distribution, so the distribution is calculated. The $\alpha$ parameter is then extracted using a $\chi^2$ fit. This analysis is useful for testing spin correlations in hadron decays.

Source code: WA46_1984_I206647.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Omega decay asymmetries
  class WA46_1984_I206647 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(WA46_1984_I206647);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );

      // Book histograms
      book(_h_cthetalam, "cthetaLambda",20,-1,1);
      book(_h_cthetaxi0, "cthetaXi0"   ,20,-1,1);
      book(_h_cthetaxim, "cthetaXim"   ,20,-1,1);

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Omega baryons
      for(const Particle& Omega : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==3334)) {
	int sign = Omega.pid()/3334;
	if(Omega.children().size()!=2) continue;
	Particle baryon1,meson1;
	if(Omega.children()[0].pid()==sign*3122 && 
	   Omega.children()[1].pid()==-sign*321) {
	  baryon1 = Omega.children()[0];
	  meson1 = Omega.children()[1];
	}
	else if(Omega.children()[1].pid()==sign*3122 && 
		Omega.children()[0].pid()==-sign*321) {
	  baryon1 = Omega.children()[1];
	  meson1 = Omega.children()[0];
	}
	else if(Omega.children()[0].pid()==sign*3322 && 
		Omega.children()[1].pid()==-sign*211) {
	  baryon1 = Omega.children()[0];
	  meson1 = Omega.children()[1];
	}
	else if(Omega.children()[1].pid()==sign*3322 && 
		Omega.children()[0].pid()==-sign*211) {
	  baryon1 = Omega.children()[1];
	  meson1 = Omega.children()[0];
	}
	else if(Omega.children()[0].pid()==sign*3312 && 
		Omega.children()[1].pid()==111) {
	  baryon1 = Omega.children()[0];
	  meson1 = Omega.children()[1];
	}
	else if(Omega.children()[1].pid()==sign*3312 && 
		Omega.children()[0].pid()==111) {
	  baryon1 = Omega.children()[1];
	  meson1 = Omega.children()[0];
	}
	else
	  continue;
	if(baryon1.children().size()!=2) continue;
	Particle baryon2,meson2;
	if(baryon1.abspid()==3122) {
	  if(baryon1.children()[0].pid()==sign*2212 && 
	     baryon1.children()[1].pid()==-sign*211) {
	    baryon2 = baryon1.children()[0];
	    meson2   = baryon1.children()[1];
	  }
	  else if(baryon1.children()[1].pid()==sign*2212 && 
		  baryon1.children()[0].pid()==-sign*211) {
	    baryon2 = baryon1.children()[1];
	    meson2   = baryon1.children()[0];
	  }
	  else
	    continue;
	}
	else if(baryon1.abspid()==3322) {
	  if(baryon1.children()[0].pid()==sign*3122 && 
	     baryon1.children()[1].pid()==111) {
	    baryon2 = baryon1.children()[0];
	    meson2   = baryon1.children()[1];
	  }
	  else if(baryon1.children()[1].pid()==sign*3122 && 
		  baryon1.children()[0].pid()==111) {
	    baryon2 = baryon1.children()[1];
	    meson2   = baryon1.children()[0];
	  }
	  else
	    continue;
	}
	else if (baryon1.abspid()==3312) {
	  if(baryon1.children()[0].pid()==sign*3122 && 
	     baryon1.children()[1].pid()==-sign*211) {
	    baryon2 = baryon1.children()[0];
	    meson2   = baryon1.children()[1];
	  }
	  else if(baryon1.children()[1].pid()==sign*3122 && 
		  baryon1.children()[0].pid()==-sign*211) {
	    baryon2 = baryon1.children()[1];
	    meson2   = baryon1.children()[0];
	  }
	  else
	    continue;
	}
	// first boost to the Omega rest frame
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Omega.momentum().betaVec());
	FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	// to lambda rest frame
	LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	Vector3 axis = pbaryon1.p3().unit();
	FourMomentum pp = boost2.transform(pbaryon2);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	if(baryon1.abspid()==3122)
	  _h_cthetalam->fill(cTheta);
	else if(baryon1.abspid()==3322)
	  _h_cthetaxi0->fill(cTheta);
	else if(baryon1.abspid()==3312)
	  _h_cthetaxim->fill(cTheta);
      }
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }
    
    /// Normalise histograms etc., after the run
    void finalize() {
      normalize(_h_cthetalam);
      normalize(_h_cthetaxi0);
      normalize(_h_cthetaxim);
      // calculate the values of alpha
      Scatter2DPtr _h_alphaLam;
      book(_h_alphaLam,1,1,1);
      pair<double,double> alpha = calcAlpha(_h_cthetalam);
      _h_alphaLam->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      Scatter2DPtr _h_alphaXi0;
      book(_h_alphaXi0,1,1,2);
      alpha = calcAlpha(_h_cthetaxi0);
      _h_alphaXi0->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      Scatter2DPtr _h_alphaXim;
      book(_h_alphaXim,1,1,3);
      alpha = calcAlpha(_h_cthetaxim);
      _h_alphaXim->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_cthetalam,_h_cthetaxi0,_h_cthetaxim;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(WA46_1984_I206647);


}